
The Journal of Logic and
Algebraic Programming 65 (2005) 51–104

��� �����	
��

��
� 	��
	
����	
�
�����	��
��

www.elsevier.com/locate/jlap

Analyzing a χ model of a turntable system using
Spin, CADP and Uppaal

E. Bortnik a, N. Trčka b, A.J. Wijs c,∗, B. Luttik b,c,
J.M. van de Mortel-Fronczak a, J.C.M. Baeten b,

W.J. Fokkink c,d, J.E. Rooda a

a Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

b Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

c Department of Software Engineering, CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
d Department of Theoretical Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands

Received 5 October 2004; received in revised form 15 March 2005; accepted 2 May 2005

Abstract

Nowadays, due to increasing system complexity and growing competition and costs, industry
makes high demands on powerful techniques used to design and analyze manufacturing systems.
One of the most popular techniques to do performance analysis is simulation. However, simulation-
based analysis cannot guarantee the correctness of a system, so it is less suitable for functional
analysis. Our research focuses on examining other methods to do performance analysis and func-
tional analysis, and trying to combine the two. One of the approaches is to translate a simulation
model that is used for performance analysis to a model written in an input language of an existing
verification tool. We translate a χ [D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, R.R.H.
Schiffelers, Syntax and Consistent Equation Semantics of Hybrid Chi, CS-Report 04-37, Eindhoven
University of Technology, 2004] simulation model of a turntable system into models written in
the input languages of the tools CADP [J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R.
Mateescu, M. Sighireanu, CADP—a protocol validation and verification toolbox, in: Proceedings of
the 8th Conference on Computer Aided Verification (CAV’96), Lecture Notes in Computer Science,
vol. 1102, 1996, pp. 437–440], SPIN [G.J. Holzmann, The SPIN Model Checker, Addison-Wesley,
2003] and UPPAAL [K.G. Larsen, P. Pettersson, W.Yi, UPPAAL in a nutshell, Int. J. Software Tools
for Technology Transfer 1 (1–2) (1997) 134–152] and do a functional analysis with each of them.
This allows us to evaluate the usefulness of these tools for the functional analysis of χ models. We

∗ Corresponding author. Tel.: +31 20 592 4177; fax: +31 20 592 4199.
E-mail address: a.j.wijs@cwi.nl (A.J. Wijs).

1567-8326/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2005.05.001

www.elsevier.com/locate/jlap
mailto:a.j.wijs@cwi.nl

52 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

compare the input formalisms, the expressiveness of the temporal logics, and the algorithmic tech-
niques for model checking that are used in those tools.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

The χ language is a modeling and simulation language for the specification of man-
ufacturing systems. It can be used for creating discrete-event, continuous or combined,
so-called hybrid, models. The language and simulator have been successfully applied to
a large number of industrial cases, such as an integrated circuit manufacturing plant, a
brewery and process industry plants [7]. Simulation is a powerful technique for perfor-
mance analysis, like calculating throughput and cycle time, but for functional analysis
(verification) it is less suitable. It can, for instance, show that (a model of) a system has a
deadlock but it cannot show that the system is deadlock-free. For the purpose of verification
first the discrete-event part of χ has been formalized [13]. The language has been mapped
onto the very expressive, process algebra like, language called χσ for which an operational
semantics was defined and a state space generator has been built [13]. Recently, a new
formalization of χ , including the hybrid part, resulted in a more elegant language [5]. The
discrete-event part of this language is very similar to χσ [6].

The main goal of the TIPSy project [41] (Tools and Techniques for Integrating Per-
formance Analysis and System Verification)1 is to combine performance analysis with
verification, particularly in the χ environment. At the start of this project we are focusing
on verification. There is no tool support for the new version of χ yet and the current toolset
for χσ is a prototype, meant only for educational purposes. Therefore it is not comparable,
when it comes to state space generation, to more developed toolsets. Since we do not expect
that a dedicated tool for χ , that would be able to compete with existing optimized model
checkers, could be built within reasonable time, our aim is to translate χ models to input
languages of other existing tools. While doing this, we want to compare input formalisms
of different tools and see which are best suited for translating χ models to. We also want
to investigate the expressiveness of temporal logics and algorithmic techniques for model
checking that are used in those tools.

For this paper, we choose the well-known specification and verification tools CADP [16],
SPIN [27] and UPPAAL [30]. There are several reasons why we make this choice:

(1) The three tools are quite popular and have been used to detect design errors in appli-
cations from many different domains.

(2) Each tool has a different input language. We use µCRL [19] as the modeling lan-
guage for CADP. It is an action-based, process algebraic (ACP [8,4,17]) language
with excellent data support. SPIN’s input language, PROMELA, is a state-based,
imperative language. Finally, UPPAAL’s input language is a specific class of timed
automata, combining both action-based and state-based features.

(3) Each tool handles time differently.

1 Project supported by the Dutch Organization for Scientific Research (NWO), Project Number 612.064.205.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 53

(4) Each tool has a different logic for expressing properties of a model. In CADP, regular
alternation-free µ-calculus [35] is applied, while SPIN and UPPAAL use a temporal
logic, LTL and TCTL [2] respectively.

(5) Each tool uses a different strategy for verification. In CADP (with µCRL as input)
the whole state space must be built. SPIN does model checking on-the-fly. Uppaal
checks invariant and liveness properties by on-the-fly exploration of the state space
of a system in terms of symbolic states represented by constraints.

Our case study is a turntable device, a rotating drilling machine. We choose this partic-
ular case study because:

(1) It is not too complex; otherwise it would take the emphasis away from translating
and comparing and make the modeling unnecessarily difficult.

(2) It is complex enough in the sense that it contains many interesting features to model,
such as parallelism and time.

(3) It is a case study that has been used before [13], making it possible for us to look at
existing models and extend them.

(4) We have access to a physical turntable system and we can use it to perform physical
experiments.

In this document, we show how the turntable model can be mapped to the input lan-
guages of the mentioned tools and how it can be verified in those environments. We do
not cover translations of general χ models and rather focus on the turntable only, but it
should be clear that the same story holds for a large class of χ specifications. Of course,
models resulting from a translation of χ models might be very different from those made
from scratch. Our aim is to have translations resemble the original χ model closely so that
possible verification errors in these translations can be related back to the original model.
We show that many interesting properties of the turntable can be verified but that none of
the three tools can easily express all of them. We also compare experiences of working
with the tools and results such as the number of states generated.

The structure of the document is as follows. First, the turntable device is explained.
Then, we give an introduction to χ and present the model of the turntable. The next three
sections are devoted to each tool. We give an overview of the input language and the veri-
fication mechanism, we explain how we deal with the translation problems and we present
the verification of the turntable in detail. The last section gives some comparisons and
conclusions.

2. Turntable description

The turntable system is an example of a real-life manufacturing system representing the
application domain of (real-time) control research [13,3,12].

The turntable system consists of a round turntable, a clamp, a drill and a testing device
(Fig. 1). The turntable transports products to the drill and the testing device. The drill
drills holes in the products. After drilling a hole the products are delivered to the tester,
where the depth of the hole is measured, since it is possible that drilling went wrong. To
control the turntable system, sensors and actuators are used. A sensor detects a physical
phenomenon, and changes its state. The controller reads the state of the sensor, and sends
output to actuators. The actuators translate output from the controller to a physical change
in the machine.

The turntable has four slots that can hold a product. Each slot can hold at most one
product and can be in input, drill, test or output position. There are three sensors attached

54 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

Fig. 1. The turntable system.

to the turntable: the sensor s1 at the input position (to detect if a product has been added
by the environment), the sensor s3 in the output position (to detect if a product has been
removed by the environment) and the sensor s2 that detects whether the turntable has
completed the turn.

The drilling module consists of the drill and the clamp. Every product should be locked
before drilling and unlocked afterwards. To detect whether the clamp is locked or not two
sensors are used (c1 and c2 respectively). The drill also has two sensors to detect whether
the drill is in its up (d1) or down (d2) position. These sensors are located above the surface
of the turntable, so it is not possible to say whether the product has been drilled successfully
or not.

In the testing position there are two sensors to detect whether the tester has reached its
up (t1) or down (t2) position. If the tester has reached its down position the test result of
the product is good and if the sensor at the down position did not send a signal during a
certain amount of time the test result of the product is bad.

The turntable control system consists of the main controller, turntable controller, drill
controller, and tester controller. The main controller supervises the other controllers and the
environment. It stores current information about products and operations being performed
and based on this information it issues commands to the other controllers and the environ-
ment to start operations. When operations are completed the main controller updates the
information about the products.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 55

The turntable controller gets signals from the turntable sensors and passes them to the
main controller. It also starts rotation of the turntable at the command of the main control-
ler.

The drill controller supervises the drill and the clamp. It switches the drill on/off and
commands to lock/unlock the clamp or to start or stop drilling. The drill controller also
gets signals from the drill and clamp sensors.

The test controller sends a signal to the tester to start the operation. Then it waits for a
signal from the sensor at the down position. If the hole is not deep enough, the sensor is
not activated and the current product should be rejected.

The operation-routing sequence of each product is following: add a product to the
input position, make a turn (now product is in the drilling position), lock the clamp,
switch on the drill, drill, switch off the drill, unlock the clamp, make another turn (now
product is in the test position), test, and make a turn again (product is in the removing
position).

No product can be added if the adding slot is not empty. No drilling, testing or removing
can be performed if the corresponding slot is empty. The turntable can treat up to four
products at the same time, that means that the operations can be done in parallel.

2.1. Design rules and assumptions

Creating the model we consider only “good weather” behavior, i.e. the assumption is
that the system works without faults and there is no product loss. The initial state is defined
as follows: all slots are empty and no operation is started.

For reasons of simplicity, we decided to concentrate on the control system. That means
that we do not model material flow as this information can be obtained from the information
stored by the main controller.

We assume that the main controller sends messages to the environment to allow add-
ing and removing of products and the environment informs the main controller when the
operations are completed. The environment can skip the adding or removing operations.
A product can be removed from the removing position only if it has been drilled properly.
If a product has a good test result and it has not been removed, it should not be drilled
and tested again. If a product has a bad test result it must be drilled and tested again. That
means that the information whether product has been added or removed is necessary only
after the rotation of the turntable.

When the other sensors change their states, the control system must be notified imme-
diately. For instance, if the clamp sensor does not report that the clamp is locked, the drill
cannot start drilling. This difference causes different implementation of the sensors. The
turntable sensor states are checked by the control system just before a turn, while the other
sensors inform the control system about their state changes immediately.

We also assume that the order of starting and ending of the adding, drilling, testing and
removing operations is not known in advance.

The execution of each turntable operation requires a certain amount of time. Because
the duration of the turntable operations has not been defined anywhere, we have decided
to use the delays, that have been defined in other turntable models, like [13]. We assume
that the environment needs 2 time units to perform adding or removing of a product. The
clamp needs 2 time units to lock or unlock a product. The drilling operation takes 3 time
units and returning the drill to its up position takes 2 time units. Testing and returning the
tester to its initial (up) position require 2 time units each.

56 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

2.2. Verification properties

Traditionally, verification properties have been classified into safety and liveness prop-
erties. Safety is usually defined as a set of properties that the system may not violate,
while liveness is defined as the set of properties that the system must satisfy [27]. Safety,
then, defines that something bad will never happen, and liveness defines that eventually
something good will happen. It can be argued what kind of property the absence of
deadlock is, but here it is considered a liveness property, due to the fact that a deadlock
situation trivially satisfies all safety properties, but does not satisfy deadlock
freedom [22].

Given those assumptions we want to verify the following properties:
(1) The system does not contain a deadlock, i.e. it cannot come to a state from which it

cannot continue operating (liveness).
(2) If drilling (testing, adding or removing) is started then it is also finished and the

turntable does not rotate in the meantime (liveness and safety).
(3) If the product has a bad test result then the product remains on the table and is drilled

again (liveness).
(4) If the product has a good test result then the remover will be called to remove the

product (liveness).
(5) No drilling (testing or removing) takes place if there is no product in the slot and no

adding is performed if there is a product in the slot (safety).
(6) Every added product is drilled in the next rotation (liveness).
(7) Every product eventually leaves the table (liveness).
(8) When a product is added it takes between 21 and 30 time units to get its test result

(liveness).
The property 7 is a liveness property that requires a fairness principle, which makes this

property the most complicated one.
First, a product can be removed only if it has a good test result. However, the remover

can always decide not to remove and the tester can always generate bad test results. This
can happen because the choices whether the product will be removed and whether the test
result of the product is good or bad are non-deterministic. In order to verify this property
we must put some notion of fairness to the verification process, i.e. exclude unfair paths,
in which a product yields a bad test result infinitely often.

Second, since there are at most four products on the table it can happen that one of
the products stays on the table while the other ones are drilled properly and removed. In
order to verify that every product will eventually be removed we must identify them in
some way. The most common solution is to give colors to the products, for instance, red
and white, and change the adder so that it adds (non-deterministically) zero or more white
products, then one red, and then again zero or more white ones. We want to make sure that
if a red product is added then a red one will leave the table eventually. Another solution
would be to assign unique identifiers to products or use some other way to distinguish
them.

The fairness constraints can be expressed syntactically in linear temporal logic (like
PLTL), but not in branching temporal logic (like CTL). In µ-calculus fairness properties
can be expressed very efficiently [35].

The last property (so-called bounded liveness) also requires identification of the prod-
ucts. First we calculate manually the time interval within which a test result of a product is
known based on the assumptions. After that we check this interval automatically.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 57

3. The turntable model in χ

3.1. The χ language

The χ language was designed as a hybrid, modeling and simulation language. Since
we are interested only in discrete-event models and verification, we present here just a
part of the language, disregarding features that are used for simulation and to model hybrid
behavior. For a complete reference of χ , see [5]. The discrete-event subset of χ is described
in [6].

Data types. The χ language is statically strongly typed. Every variable has a type which
defines the allowed operations on that variable. The basic data types are boolean, natural,
integer and real numbers and enumerations. The language provides a mechanism to build
sets, lists, array tuples, record tuples, dictionaries, functions, and distributions (for stochas-
tic models). Channels also have a type that indicates the type of data that is communicated
via the channel.

Time model. The time in χ is dense, i.e. timing is measured on a continuous time scale.
The weak time determinism principle, or sometimes called the time factorization property,
(time does not make a choice) and maximal progress (a process can delay only if it cannot
do anything else) are implicit. The time additivity (if a process can delay first t1 and then
immediately following t2 time units then it can delay t1 + t2 time units from the start) is not
present. Delaying is enforced by the delay operator but some processes can also implicitly
delay, e.g. send.

Atomic processes. The atomic processes of χ are process constructors and they cannot
be split into smaller processes. They are:

(1) The assignment process (x := e). It assigns the value (must be defined) of expression
e to variable x. It does not have the possibility to delay.

(2) The skip process. It performs the internal action τ and cannot delay.
(3) The send process (m ! e). It sends the value of the expression e via the channel m. It

is able to delay arbitrarily long.
(4) The receive process (m ? x). It receives a value via the non-empty channel m and

assigns it to the variable x. It is also able to delay arbitrarily long.
(5) The delay process (�e). It delays a number of time units equal to the value of the

expression e or less. The value of e must be a positive real number.

Communication model. Communication in χ is synchronous, meaning that a send and
a receive action on a same channel cannot happen individually but only together, as a
communication action.

Operators. Atomic processes can be combined by means of the following operators.
We present each one of them together with their (informal) semantics.

(1) The guard operator (→). A process b → p behaves as p if the value of the boolean
expression (guard) b is true, otherwise it deadlocks.

(2) The alternative composition operator ([]). A process p [] q represents a non-deter-
ministic choice between p and q.

58 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

(3) The sequential composition operator (;). A process p; q behaves as p followed by
the process q.

(4) The repetition operator (∗). A process ∗p behaves as p infinitely many
times.

(5) The parallel operator (||). A process p || q executes p and q concurrently in an
interleaved fashion, i.e. the actions of p and q are executed in arbitrary order. If one
of the processes can execute a send action and the other one can execute a receive
action on the same channel then they communicate, in other words p || q executes
the communication action on this channel.

(6) The scope operator (|[|]|). A process |[s | p]| behaves as p in a local state s. The
state s is used to define local variables and channels visible only to the process p.
It is recursively defined as the empty state or as dcl, s′ where s′ is a state and dcl

is a variable declaration (x : type[= val]) or a channel declaration (m : ? type for
receiving and m : ! type for sending).

Process definitions. The language χ provides the possibility to define processes. We
do not give a syntax definition here but rather an example:

proc p(c : ? nat , b : bool) = |[x : nat | b → c ? x]|
The process p has two arguments, a channel c that can transport natural numbers and a

boolean variable b. It has only one local variable, x. The process can now be instantiated
(e.g. p(m, y > 7)) inside another process.

3.2. The turntable model

The turntable system architecture is depicted in Fig. 2. The mechanical components are
represented by means of the processes tester, drill, clamp and turn_table. These com-
ponents are controlled by switching commands: cDrillOnOff switches the drill on/off,
cDrillUpDown instructs the drill to start or stop drilling, cClampOnOff instructs the clamp
to lock or unlock the product, and cTesterUpDown instructs the tester to start or stop test-
ing. The other signals that are used are cRotate (commands the turntable to start turning),
cEnvCanAdd, cEnvCanRemove (inform the environment that it can perform adding or
removing operations respectively). As already mentioned, the sensors are implemented
in several ways (more explanations are given in the descriptions of the corresponding
processes).

The control system model consists of the main controller, drill and clamp controller,
tester controller and turntable controller which are modeled by means of the processes
main_control, drill_control, tester_control and TTC respectively. The processes env_add
and env_remove represent the environment.

Below we explain all processes in detail. Of each process, a description is given fol-
lowed by the χ code that models the component.

The turn_table process. In the turn_table process we define three boolean variables
representing the turntable sensors. The variables bS1 and bS3 correspond to the sensors
at the adding and removing positions respectively. The variable bS2 corresponds to the
turntable sensor that detects whether the turntable is rotating or not. The current states

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 59

of the sensors are sent via channels cS1, cS2, cS3. The sensor states are updated by the
environment when a product is added or removed (cEnvAdded, cEnvRemoved). In the real
system the states of these sensors are automatically updated while turning. To achieve this
we add two more channels (cUpdateS1, cUpdateS3). A different way to model a change of

Fig. 2. The turntable model architecture.

60 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

the sensor states can be found later in the description of the main_control process. When
the turn_table gets the signal cRotate it performs a delay. Reading and updating the sensors
are ‘atomic’ and instantaneous actions. The control system is modeled in such a way that
it is not possible to perform those actions in parallel. This allows us to use alternative
composition instead of the parallel one and reduce the state space.

proc Turn_table(cEnvAdded, cEnvRemoved
, cRotate, cUpdateS1, cUpdateS3 : ? bool

, cS1, cS2, cS3 : ! bool

)=
|[bS1 : bool = false, bS2 : bool = false, bS3 : bool = false, x : bool

| ∗ (cS1 ! bS1
[] cS2 ! bS2
[] cS3 ! bS3
[] cEnvAdded ? bS1
[] cEnvRemoved ? x ; bS3 := false
[] cUpdateS1 ? bS1
[] cUpdateS3 ? bS3
[] cRotate ? bS2; �4.0; bS2 := false
)

]|

The clamp process. The clamp has one actuator that is used to switch it on/off (cClam-
pOnOff). The clamp also has two sensors to detect if it is locked or unlocked. When the
states of the sensors are changed, the process clamp reports to the control system via the
channels cLocked and cUnlocked.

proc Clamp(cClampOnOff : ? bool

, cLocked, cUnlocked : ! bool

)=
|[x : bool

| ∗ (cClampOnOff ? x ; �2.0; cLocked ! true
; cClampOnOff ? x ; �2.0; cUnlocked ! true
)

]|

The drill process. The drill is controlled by two independent actuators. One of the
actuators is used to switch the drill on/off (cDrillOnOff). The other one (cDrillUpDown)
instructs the drill to start drilling or to return in its initial (up) position. The states of the sen-
sors are detected through the channels cDrillDownDone, cDrillUpDone. The commands
are handled independently, that is why we use the parallel composition in the drill process.
On the other hand, both actuators are the parts of the one physical component (the drill)
and that is why we do not represent them by means of two separate χ processes, instead,
we combine them into one process.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 61

proc Drill(cDrillUpDown, cDrillOnOff : ? bool
, cDrillUpDone, cDrillDownDone
, cDrillOnDone, cDrillOffDone : ! bool
)=

|[x : bool

| ∗ (cDrillUpDown ? x ; �3.0; cDrillDownDone ! true
; cDrillUpDown ? x; �2.0; cDrillUpDone ! true
)

|| ∗ (cDrillOnOff ? x; cDrillOnDone ! true
; cDrillOnOff ? x; cDrillOffDone ! true
)

]|

The tester process. The tester is controlled by one actuator (cTesterUpDown) that is
used to start or stop testing. It has two sensors as well. One of them is used to detect
a test result of a product. The other one detects whether the tester is in its initial (up)
position. Possible test results are implemented by a non-deterministic choice. When the
test result of a product is good the process tester sends a signal via the channel cTes-
terDownDone. Otherwise, the process tester waits for the command to move up to the
initial position (cTesterUpDown) and, then, sends a signal through the channel cTesterUp-
Done.

proc Tester(cTesterUpDown : ? bool
, cTesterUpDone, cTesterDownDone : ! bool
)=

|[x : bool

| ∗ (cTesterUpDown ? x
; �2.0
; (cTesterDownDone ! true [] skip)

; cTesterUpDown ? x
; �2.0
; cTesterUpDone ! true
)

]|

The main_control process. The main_control process keeps track of the slot states and
operates the other controllers. We use four integer variables (p0, p1, p2, p3) to describe
the state of every slot. The variable values range from 0 to 4 (0 means that there is no
product in the slot, 1—there is a product in the slot and it is not drilled, 2—a product
has been drilled, 3—a product has been tested and has a bad test result, and 4—a product
has been tested and has a good test result). First, the main_control process checks the
states of the slots and starts corresponding processes (adding, drilling, testing and remov-
ing). As we assumed, the order of starting and finishing of these operations can vary and
is not known a priori. In order to implement it, we use nested parallelism. The opera-
tions (cEnvCanAdd, cStartDrill, cStartTest, cEnvCanRemove) are started according to the
following rules:

62 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

• The environment is allowed to add a product if there is no product in the slot;
• Drilling can be performed if there is a product in the slot and it has not been drilled yet

or it has a bad test result;
• Testing is allowed if there is a product in the slot and it has been drilled;
• The environment is allowed to remove a product if there is a product in the slot and it

has a good test result.
If these operations have been started the main_control process waits till they are com-

pleted (cEnvAddFinished, cEnvRemFinished, cTested, cDrillEnded). After that, it gives the
command to the turntable controller (the process TTC) to read the states of the sensors at
the adding and removing positions (cGetS1, cGetS3) and gets their current states (cSetS1,
cSetS3). If their states have been changed (that means that the products have been added
or removed), the main_control updates the information about current slot states. Then, it
sends the command to the turntable controller to rotate the turntable (cTurn) and waits till
the turn is completed (cTurned). Then, the loop is repeated. In the real system the states
of the sensors at adding and removing positions are automatically updated during the turn.
To achieve this in the model we send new states of the turntable sensors over the channel
cTurn. In our model main_control sends the value of the sensors after the turn over the
channel cTurn (the information is coded as an integer in following way: p = 0 means
that there is no product in the adding and removing positions, p = 1 means that there is no
product in the adding position and there is a product in the removing slot, p = 2 means that
there is a product in the adding position and there is not product in the removing position,
p = 3 means that there are products in both slots). Another approach to update the sensor
states is to duplicate the information about all slots in the turn_table process [13]. This
approach allows one to separate the physical and control systems easier and simpler but
leads to a larger state space.

proc Main_control(cDrillEnded, cTested, cTurned, cSetS1
, cSetS3 : ? bool
, cEnvCanAdd, cEnvAddFinished
, cStartDrill, cStartTest
, cEnvCanRemove, cEnvRemFinished
, cGetS1, cGetS3 : ! bool , cTurn : ! nat

)=
|[x, y : bool , p : nat = 0, pp : nat = 0,

p0 : nat = 0, p1 : nat = 0, p2 : nat = 0, p3 : nat = 0
| ∗((

(p0 = 0 → cEnvCanAdd ! true; cEnvAddFinished ? x
[] p0 /= 0 → skip
)

|| (p1 = 1 ∨ p1 = 3 → cStartDrill ! true; cDrillEnded ? x; p1 := 2
[] ¬(p1 = 1 ∨ p1 = 3) → skip
)

|| (p2 = 2 → cStartTest ! true; cTested ? y; (y → p2 := 4 [] ¬y → p2 := 3)

[] p2 /= 2 → skip
)

|| (p3 = 4 → cEnvCanRemove ! true; cEnvRemFinished ? x
[] p3 /= 4 → skip
)

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 63

)

; (p0 = 0 → cGetS1 ! true; cSetS1 ? x; (x → p0 := 1 [] ¬x → skip)

[] p0 /= 0 → skip
)

; (p3 = 4 → cGetS3 ! true; cSetS3 ? x; (¬x → p3 := 0 [] x → skip)

[] p3 /= 4 → skip
)

; pp := p3; p3 := p2; p2 := p1; p1 := p0; p0:=pp
; (p0 = 0 → (p3 = 0 → p := 0 [] p3 /= 0 → p := 1)

[] p0 /= 0 → (p3 = 0 → p := 2 [] p3 /= 0 → p := 3)

)

; cTurn ! p; cTurned ? x
)

]|

The drill_control process. The process drill_control gets the command to start drilling
from the main_control over the channel cStartDrill. Then, it sends a signal to lock the
clamp (cClampOnOff) and waits for the reply from the clamp sensor (cLocked). When
the clamp is locked the drill_control uses the other switching command (cDrillOnOff)
to start drilling and waits for the confirmation (cDrillOnDone). Then, it gives a signal to
start drilling (cDrillUpDown), waits for confirmation from the sensor (cDrillDownDone),
sends a signal to return the drill in its initial (up) position (cDrillUpDown), and waits for
confirmation from the sensor (cDrillUpDone). Then, the drill_control switches the drill
off (cDrillOnOff), and waits for confirmation (cDrillOffDone). After that, the drill_control
switches the clamp on again (cClampOnOff), waits for the signal from the clamp sensor
(cUnlocked) and reports to the main_control that drilling is completed (cDrillEnded).

proc Drill_control(cStartDrill, cLocked, cUnlocked
, cDrillUpDone, cDrillDownDone
, cDrillOnDone, cDrillOffDone
, cDrillEnded : ? bool

, cClampOnOff, cDrillUpDown
, cDrillOnOff : ! bool

)=
|[x : bool

| ∗ (cStartDrill ? x
; cClampOnOff ! true; cLocked ? x
; cDrillOnOff ! true; cDrillOnDone ? x
; cDrillUpDown ! true; cDrillDownDone ? x
; cDrillUpDown ! true; cDrillUpDone ? x
; cDrillOnOff ! true; cDrillOffDone ? x
; cClampOnOff ! true; cUnlocked ? x
; cDrillEnded ! true
)

]|

64 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

The tester_control process. Tester_control gets a command to perform testing from
main_control (cStartTest) and switches tester on (cTesterUpDown). To perform the testing
operation, tester needs 2 time units. If the tester has reached its down position within 2 time
units, the test result of the product is good (cTesterDownDone) and if the sensor does not
react in 2 time units, the test result of the product is bad. However, in our model tester_con-
trol waits for the signal from the tester for 4 time units instead of 2. The reason for this is
that if tester and tester_control delay for the same amount of time, there is a possibility
that tester_control would make its choice before tester. So, in order to ensure that tester
always makes its choice before tester_control, the latter delays longer. In that case, tester
makes a choice in 2 time units and after that tester_control has no choice anymore. Then,
tester_control stores the test result (bT stRes), switches tester off (cTesterUpDown), and
sends the test result to main_control over the channel cTested.

proc Tester_control(cStartTest, cTesterDownDone
, cTesterUpDone : ? bool
, cTesterUpDown, cTested : ! bool
)=

|[x, bTstRes : bool

| ∗ (cStartTest ? x
; cTesterUpDown ! true
; (cTesterDownDone ? bTstRes

[] �4.0; bTstRes := false
)

; cTesterUpDown ! true
; cTesterUpDone ? x
; cTested ! bTstRes
)

]|
The TTC process. The process TTC (the turntable controller) gets commands from

main_control to perform the turn or update sensor information. When the turn is completed
TTC sends a signal to main control over the channel cTurned.

proc TTC(cTurn : ? nat , cS1, cS2, cS3
, cGetS1, cGetS3 : ? bool
, cSetS1, cSetS3, cUpdateS1, cUpdateS3
, cRotate, cTurned : ! bool
)=

|[x : bool , bS1 : bool = false, bS3 : bool = false, ss : nat = 0

| ∗ (cTurn ? ss; cRotate ! true
; cUpdateS1 ! ss = 2 ∨ ss = 3
; cUpdateS3 ! ss = 1 ∨ ss = 3
; cS2 ? x ; cTurned ! true

[] cGetS1 ? x ; cS1 ? bS1; cSetS1 ! bS1
[] cGetS3 ? x ; cS3 ? bS3; cSetS3 ! bS3
)

]|

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 65

The environment processes. There are two environment processes in the model: add-
ing and removing. They get appropriate signals from main_control to add or remove a
product (cEnvCanAdd, cEnvCanRemove). After performing (or skipping) the operations
the environment processes notify main_control that they have finished (cEnvAddFinished,
cEnvRemFinished). If a product is added or removed the environment processes send cor-
responding messages to the turn_table process through the channels (cEnvAdded, cEnvRe-
moved).

proc Env_add(cEnvCanAdd : ? bool , cEnvAdded
, cEnvAddFinished : ! bool

)=
|[x : bool

| ∗ (cEnvCanAdd ? x
; (skip [] cEnvAdded ! true)
; cEnvAddFinished ! true
)

]|

proc Env_remove(cEnvCanRemove : ? bool , cEnvRemoved
, cEnvRemFinished : ! bool

)=
|[x : bool

| ∗ (cEnvCanRemove ? x
; (cEnvRemoved ! true [] skip)

; cEnvRemFinished ! true
)

]|

The state space. As already mentioned, there is no tool available for χ yet. Therefore
we have generated the state space in the χσ toolset with the following results: the number
of states is 32,570 (6839 states after minimization under strong bisimulation).

4. PROMELA/SPIN

4.1. Introduction to PROMELA/SPIN

The full presentation of PROMELA, a very complex language, is beyond the scope of
this paper. We give here only a brief overview mentioning only those parts of the language
that we are interested in. For more information, see [27,21,26] or consult the SPIN’s web
page http://spinroot.com.

PROMELA’s syntax is derived from C [29], with communication primitives from CSP
[25] and control flow statements based on the guarded command language [15]. It has
many language constructs similar to χσ constructs.

66 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

A common specification consists of global channel declarations, variable declarations
and process declarations with possibly one special init process. Process declarations
specify behavior, channel and variable declarations define the environment in which the
processes run. PROMELA has a rather limited set of data types, only bool, byte, short, int
(all with the unsigned possibility) and channels. It also provides a way to build records and
arrays and to define macros (processed by the C language preprocessor). Message channels
are declared, for instance, as chan m = [2] of {int} meaning that the channel is buf-
fered and it can store (at most) two values of type integer (has only one field of type int).
Channels can also be of length 0, i.e. unbuffered, to model synchronous communication.
They can also have more than one field, not necessarily of the same type.

Every variable must be declared before use. The exception is the special dummy variable
‘_’ which is a predefined write-only variable, that can be used to store scratch values. The
type of this global variable is int. It is an error to use or reference its value.

Process declarations are of this form:

proctype name(parameters) {
local variables and channels;

body
}

Local variables and channels specify the local state of the process and they are not
visible to other processes. The same rules as for global variables apply here. The body is
a list of statements, itself a statement. Any expression can be used as a statement, enabled
precisely if it evaluates to a non-zero value. Assignments are also statements and have the
usual semantics. The skip statement executes the action (1) and has no effect on variables.
The send statement (m ! e_1, . . ., e_n) sends a tuple of values of the expressions e_i to the
channel m. The receive statement (m ? E_1, . . . , E_n) retrieves a message from the non-
empty channel m, for every E_i that is a variable assigns a value of e_i to it and for every
other E_j makes sure that its value matches the value of the e_j. If the channel is buffered,
a send is enabled if the buffer is not full; a receive is enabled if the buffer is non-empty.
On an unbuffered channel, a send (receive) is enabled only if there is a corresponding
receive (send) that can be executed simultaneously. There are also many variants of these
statements (message can be left in or removed from a channel after receiving, send/receive
can only be offered etc.)

There are several ways to combine statements. The alternative composition is defined
by the selection statement:

if
:: statements
...
:: statements

fi.

It selects one among its options and executes it. An option can be selected if its first state-
ment is executable. A selection blocks until there is at least one selectable option. If more
than one option is selectable, one will be chosen non-deterministically. The repetition is
achieved by the statement

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 67

do
:: statements
...
:: statements

od.

It is similar to the selection statement except that the choices are executed repeatedly,
until control is explicitly transferred to outside the statement by break or the goto state-
ment. The break terminates the innermost repetition statement in which it is executed and
cannot be used outside a repetition.

Another way to combine statements is to use sequential composition denoted as p;q or b
-> p. The latter is usually used to emphasize that a process p is guarded by the conditional
expression/statement b.

The original version of PROMELA/SPIN is untimed but there is a discrete time extension,
called DTPROMELA/DTSPIN [14]. The idea is to divide time into slices and then frame
actions into these slices. The time between actions is measured in ticks of a global digital
clock. By having a variable t declared as timer, setting its value to some expression that
evaluates to a natural number (by doing set(t, e)) and waiting for t to expire (by stating
expire(t)) a process can be enforced to postpone its execution for n time slices (where
n is the value of e). When DTSPIN executes the timeout action, all timers synchronize
and time progresses to a next slice. This action is executed only if no other actions can
be executed, meaning that maximal progress is implicit. Deadlock is recognized when
timeout is about to happen and all timers are off (not set or already expired).

PROMELA provides two constructs, atomic{stmt_1;...;stmt_n} and d_step{stmt_
1;...;stmt_n} that can be used to model indivisible events and to reduce a state space.
Their purpose is to forbid the statements from inside to interleave with other statements
in the specifications. The difference is that additionally d_step executes all statements as
one (one state in the state space). These constructs are very useful but have a limitation:
statements other than the first may not block and the d_step cannot contain send/receive
statements on unbuffered channels.

Once declared every process can be started by the PROMELA process creation mecha-
nism, the run statement. The special init process, if present, is automatically instantiated
once, and is often used to prepare the true initial state of a system by initializing vari-
ables and running the appropriate process-instances. Processes can be started with different
parameters. Once started they execute in parallel with the interleaving semantics. This is
the only way to achieve parallelism because there is no explicit parallel operator. Processes
communicate with each other through global variables and channels.

4.2. The turntable model in PROMELA

Translation of χ constructs like assignments, skip statement, sequential and alterna-
tive composition and repetition is straight-forward since they have obvious equivalents in
PROMELA.

The data types used in the turntable model are also present in PROMELA.
Both languages have a notion of channels. Communication in χ is synchronous and

consequently all channels in the PROMELA translation are of length zero. For example,
channel cRotate is declared as chan cRotate = [0] of {bool}.

68 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

In general proc definitions of χ are translated to proctype definitions of PROMELA

and init process is used to run them all.
For example, the drill_control process is translated as

proctype drill_control() {
do
:: cStartDrill?_,1;

cClampOnOff!1; cLocked?_;
cDrillOnOff!1; cDrillOnDone?_;
cDrillUpDown!1; cDrillDownDone?_;
cDrillUpDown!1; cDrillUpDone?_;
cDrillOnOff!1; cDrillOffDone?_;
cClampOnOff!1; cUnlocked?_;
cDrillEnded!1

od;
}

Since in the drill_control process we use channels only for synchronization, after receiv-
ing we do not need the value of x so we replace it by the dummy variable _. The additional
parameter ‘,1’ in cStartDrill?_,1 will be explained later.

We now present features of which translation requires a more careful consideration.
Guards. Statements of type b → p, in general cannot be just translated as b -> p.

This is due to the fact that, since in PROMELA operator -> is equivalent to the sequential
operator and the boolean expression b is also a statement, if the value of b is true, SPIN

will execute the action (1) (e.g. it will pass the guard) even though process p cannot exe-
cute anything. This is different from χ which looks for both b to be true and for p to be
executable before taking the step.

However, if p in b → p is an atomic process there is a way to translate. The guarded
assignment such as b → x := e is translated as d_step{b; x = e}. With the d_step
operator we force the statement to be executed as one action like in χ . If the value of b is
false the statement is blocked and if it is true, since an assignment is always executable,
the statement will execute only one action. Translation is similar for a guarded skip.

In order to translate guarded send/receive actions we must apply a different trick be-
cause those actions can block and therefore cannot be put inside the d_step statement. For
a channel that has send/receive actions involved in guarded statements we first change the
declaration by adding another field argument to it, one of an integer type. We need the extra
argument to synchronize on guards and we translate b → m ! e to m!e,b and B → m?x
to m?x,eval(2-B). We use 2-B instead of just B because the communication between a
guarded send and a guarded receive should not take place if both guards evaluate to false
(2-B = b is equivalent to B=1 and b=1). The eval function is used to force the evaluation
of the expression 2-B. SPIN does not do this automatically in receive statements because
the expression can be a variable in which case it should not serve as a match but instead it
would be assigned the incoming value from the message field. If a communication action,
for example m ? x, is not used in the guarded context but its counterpart send is, then it
should be translated to m?x,1. This goes similarly for m ! e when a corresponding receive
is guarded. For example, in the main_control process the send action on the channel
cStartDrill is guarded, p1 = 1 ∨ p1 = 3 → cStartDrill ! true, so this statement is
translated as cStartDrill!1,(p1 == 1 || p1 == 3). The corresponding receive action,

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 69

cStartDrill ? x in the drill_control process, is not guarded and therefore translated as
cStartDrill?_,1.

In case of the main_control process not only atomic processes are guarded, but also, for
example, we see

p0 = 0 → (p3 = 0 → p := 0 [] p3 /= 0 → p := 1)

[] p0 /= 0 → (p3 = 0 → p := 2 [] p3 /= 0 → p := 3)

To translate this fragment we use the fact that b1 → (b2 → p) is equivalent to (b1 ∧
b2) → p and that b → (p [] q) is equivalent to (b → p) [] (b → q). This assures that
we can distribute guards over the operators and have the equivalent process with guarded
atomic processes only. The PROMELA translation is therefore:

if
:: d_step{(p0 == 0 && p3 == 0) -> p = 0}
:: d_step{(p0 == 0 && p3 != 0) -> p = 1}
:: d_step{(p0 != 0 && p3 == 0) -> p = 2}
:: d_step{(p0 != 0 && p3 != 0) -> p = 3}

fi;

Time. Note that in the turntable model all the delays are natural numbers so we do not
think that much is lost when switching from continuous to discrete time. The �n state-
ment is translated to the DTPROMELA statement expire(t), where t is timer, previously
set to the value of n. In cases where �n is not involved in a choice, set(t,n) can be
present immediately before the expire(t). This is, indeed, the case in the translations of
the clamp, turn_table, drill, tester, env_add and the end_remove process. However, in the
tester_control process there is an alternative composition of delaying and receiving:

cTesterUpDown ! true
; (cTesterDownDone ? bTstRes

[] �4.0; bTstRes := false)
; cTesterUpDown ! true

In order to prevent time from making a choice, the statement set(t,4) must be moved
to some place ‘safe’, i.e. outside of the alternative composition. That is because it is al-
ways executable and therefore always available as a choice, while expire(t) is a boolean
expression/statement that is blocked until 4 time slices later. The discussed fragment of the
tester_control process is translated as:

proctype tester_control(){
bool bTstRes;
timer t;

do
:: cStartTest?_,1; set(t,4);

cTesterUpDown!1;
if
:: cTesterDownDone?_; bTstRes = 1
:: expire(t); bTstRes = 0
fi;

70 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

. . .

od
}

Parallel operator. In PROMELA there is no explicit parallel operator. Since processes
drill and main_control contain it, we encounter a problem when trying to translate
them.

In the drill process no variables are shared (except the dummy x that is removed in
the PROMELA translation anyway) and the parallel operator is not used in the context of
other operators. This means that drill can be split into two smaller processes that can be
translated separately:

proctype drill1() {
timer t;

do
:: cDrillUpDown?_;\vspace{1pt}

set(t,3); expire(t);\vspace{1pt}
cDrillDownDone!1;\vspace{1pt}
cDrillUpDown?_;\vspace{1pt}
set(t,2); expire(t);\vspace{1pt}
cDrillUpDone!1

od
}

proctype drill2() {

do
:: cDrillOnOff?_;

cDrillOnDone!1;
cDrillOnOff?_;
cDrillOffDone!1

od
}

The drill1 and drill2 are executing in parallel when started in the init process.
On the other hand, in the main_control process, the parallel operator is used within a

repetition and a sequential composition context. To solve this problem we use PROMELA’s
process creation mechanism. The parts of the main_control process that run in parallel are
translated to separate process definitions, namely MC1(), MC2(), MC3() and MC4(). These
processes should not be started in the init process since they are not available from the
beginning. The part that comes after the parallel composition (together with the loop) is
also translated to the new process but with the additional statement at the beginning of the
loop whose role is to start the new processes. This process is called main_control and it
must be started in the init process.

There is one more problem to solve. After the main_control process starts its subpro-
cesses it should be waiting for them to finish, not run in parallel with them as would be
the case now. Therefore, some synchronization is needed. We use a global variable WAIT
of type integer, initially 0, which is incremented at the end of each subprocess, and for
which the main_control waits to be equal to 4, the number of subprocesses it started.
Then, it sets the variable back to 0 (for later use) and continues. Therefore, main_control
is translated as:

proctype main_control(){
bool x;
int p = 0, pp = 0;

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 71

do
:: atomic{ run MC1(); run MC2();

run MC3(); run MC4() };

d_step{ (WAIT == 4) -> WAIT = 0 };

. . .

od
}

Note that since variables p0, p1, p2 and p3 are shared between parts that are now separate
processes in PROMELA, they must be declared in the global scope.

Remark. Since parts of the main_control process that run in parallel do not communicate
with each other the parallel operator here is just an interleaving operator. In some cases
the interleaving of actions in PROMELA could also be achieved with one loop and few
additional guards (boolean variables). The idea is to associate one guard to each action. If
there is a choice between two actions they share the same guard. Only actions available
from the start have their guards initially set to true. When an action is executed, its guard
is put to false and the guard of the action that comes next is assigned true. This is done in
a loop that is exited when all the guards are false. To illustrate the technique we give an
example. The interleaving between a; b and c; (d [] e) can be expressed as:

bool b1,b2,b3,b4;

d_step{ b1=1; b2=0; b3=1; b4=0; }

do
:: d_step{ b1->a; b1=0; b2=1 }
:: d_step{ b2->b; b2=0 }
:: d_step{ b3->c; b3=0; b4=1 }
:: d_step{ b4->d; b4=0 }
:: d_step{ b4->e; b4=0 }
:: !(b1 || b2 || b3 || b4) -> break

od;

The d_step is used to prevent the state space from growing when introducing extra
actions.

However, this approach results in a PROMELA model that is not very similar to the
original χ model so we use it only to compare the state spaces generated by the χσ toolset
and SPIN.

4.3. Verification of the model in SPIN

In this section we first compare state spaces generated by SPIN and χσ and later show
how we verified the properties of the turntable.

72 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

By performing an exhaustive search, SPIN’s verifier, almost instantly, reported 100,995
states, 188,724 transitions and 5.8975 MB of memory used (3.342 MB for states). To com-
pare this result to the size of the state space generated by χσ (32,570 states) we switch off
all the optimizations of SPIN: like partial order reduction, statement merging and state vec-
tor compression. Now the number of states increases to 157,576, the number of transitions
to 455,580. This shows the importance of the optimization features.

The huge difference in the number of states generated by χσ and SPIN is mostly the
result of the set actions and the statements used for process creation and synchronizing in
the main_control process. To show this we first force set actions to be executed atomi-
cally with the action before. Since this action is always send or receive we cannot use the
d_step, only the atomic statement. For example, in the turn_table process

cRotate?bS2; set(t,4); expire(t)

is changed to

atomic{
cRotate?bS2;
set(t,4)

}; expire(t).

Similarly in other processes. The number of states drops to 119,616 and the number of
transitions to 212,876. Note that the fact that delays are always one (special) action in χ

but can be more (timeout) actions in PROMELA and the fact that we used atomic instead
of d_step, also introduce ‘extra’ states but this is unavoidable.

Second, instead of using the process creation mechanism we use the other trick (see
the remark on page 71) to achieve nested parallelism. This results in 48,252 states with
114,048 transitions (32,768/59,154 fully optimized), much closer to the χσ ’s result. In this
case, 9.236 MB (7.170 MB for states) is needed; 3.132 MB (1.026 MB for states) when
fully optimized.

There are several ways to perform verification of properties in SPIN but we use only
LTL formulae verification and trace-assertions. The LTL mechanism checks properties
expressed as linear temporal logic formulas over the values of variables (state based). The
trace-assertion mechanism assures that the behavior of the system matches the behavior
expressed as a deterministic automaton (trace) with only send/receive actions on globally
declared channels as labels. In a case where communication is synchronous to prevent SPIN

from checking the send offers together with regular sending we use only receive actions as
labels.

Now we discuss how the eight properties from Section 2.1 can be expressed in a way
SPIN understands them:

(1) The system does not contain a deadlock. Absence of deadlock is verified in SPIN

by performing an exhaustive search for invalid end states.
(2) If drilling (testing, adding or removing) is started then it is also finished and

the turntable does not rotate in the meantime. To verify this property we intro-
duce two new variables into the PROMELA model, drilling and rotating, both
initially 0. The idea is to keep track of states in which the table is turning and the
states in which the drilling is going on. We set the drilling to 1 when the mas-
ter controller sends a message to the drill controller instructing it to start drilling

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 73

(d_step{cStartDrill!1; drilling = 1}), and set it back to 0 when master con-
troller is informed that the drilling is finished (d_step{cDrillEnded!1; drilling
= 0}). We do a similar thing for rotating. The d_step is used to prevent the state
space from growing after the additional statement is added.

The property is now expressed as the LTL formula

[](drilling == 1 -> (rotating == 0 U drilling == 0))

Similarly, for testing, adding and removing.
(3) If the product has a bad test result the product remains on the table and is

drilled again (when it comes to the drilling position). Since the result of testing is
communicated through the channel cTested and since it is easy to express the num-
ber of rotations, we find the trace-assertion mechanism more suitable to verify this
property then LTL. We must first rephrase this property so that it can be expressed
with receive actions only: if a bad test result is received then in the next rotation
the master controller does not instruct the remover to remove and in the next two
rotations (when we are back to the drilling position) the driller will drill the product
again. Now we state this behavior as:

74 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

(4) If the product has a good test result the remover will be called to remove the
product. Similarly to the previous case we can rephrase the property and come out
with the following trace:

(5) No drilling (testing or removing) takes place if there is no product in the slot and
no adding can be performed if there is a product in the slot. The LTL formula
that represents this property is:

[]!(p1==0 && drilling==1)

but the following event-trace can be used as well:

and similarly for other cases.

(6) Every added product is drilled in the next rotation. This property can be inter-
preted as: when you add and rotate afterwards then you must drill before you rotate
again. The corresponding automaton is:

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 75

(7) Every product eventually leaves the table. To verify this property we first introduce
a variable pstn that can have values 0, 1, 2 and 3. It represents the position of the
turntable (or some mark on the rotating disk) with respect to the adding position.
After every rotation the value of pstn is changed by the rule pstn = (pstn + 1)
% 4. Second, variables removed and added are introduced. They keep track in which
position the product was removed (added). They have two extra values: -1, mean-
ing that the removing (adding) was skipped, and -2, a neutral value. The variable
removed (added) is set to the neutral value after the remover (adder) has made a
choice, to remove (add) or to skip. To verify the property we must now prove the
following four LTL formulas:

[](added == 0 -> <> removed == 3)
[](added == 1 -> <> removed == 0)
[](added == 2 -> <> removed == 1)
[](added == 3 -> <> removed == 2)

We are sure that we are removing the same product we are adding since added cannot
become 0 twice if removed does not become 3 in between (in the first formula,
similarly for the other three). That is because if the product is not removed in 4k + 3
rotations then in the next rotation we do not add because there is already a product
in the slot. To add fairness we forbid the remover to always skip removing while
in the position 3 (with a product to remove in place) and to always generate bad
test results in the position 2 (with a product to test in place). The extended formula
is:

(
[](pstn==3 && p3==4 -> <> removed == 3) &&
[](pstn==2 && p2==2 -> <> (bTstRes == 1 && pstn == 2)

) -> [](added == 0 -> <> removed == 3)

76 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

(8) When a product is added it takes between 21 and 30 time units to get its test
result. For this property we must calculate the number of clock ticks (timeout
actions) between adding a product and receiving its test result. To achieve this we
must keep track of timeout’s somehow. Since they are not communication actions,
trace assertion mechanism is ruled out. To use LTL mechanism we may try to add a
special timer that counts ticks (it decreases accordingly) but because DTSPIN does
not allow values of timers in LTL formulas this would not be of much help. Another
solution is to use timeout in formulas or to code the property directly as a never
claim but at this moment it is hard to see how this can be done in an optimal and
satisfactory way.

We here present a solution that is based on the fact that, if the product is
added in some position then no product is added in the same position before the
test result is known. Because we have to distinguish products again, we use the
same idea (variable pstn) as before. Here we check that if adding happens in the
position 0 then result is known in position 2 in 21–30 time units. Similarly for other
positions.

We introduce a variable, called added0, which becomes 0 when adding does not
happen (already a product in the slot) or is skipped (in the position 0), and 1 when
product is added (in the position 0). When added0 becomes 1, we also set a special
timer variable, called TT, to 30. The idea is to check if TT has a value less or equal to
9(= 30 − 21) in a place where test result is obtained (in the position 2) and adding
has previously happened (in the position 0). This is done by assertion mechanism of
SPIN, directly in code:

...
cTesterUpDone?_;
if
:: (added0 == 1 && pstn == 2) -> assert(TT.val < 10)
:: else
fi;
cTested!bTstRes;
...

5. µCRL/CADP

5.1. The language µCRL

Basically, µCRL is based on the process algebra ACP [8], extended with equational
abstract data types [33]. In order to intertwine processes with data, actions and recursion
variables can be parametrized with data types. Moreover, a conditional construct (if-then-
else) can be used to have data elements influence the course of a process, and alternative
quantification (also called choice quantification) is added to sum over possibly infinite data
domains.

The language comes with a toolset [10] that can build a state space from a specification
and store it in the .aut format, one of the input formats of the model checker CADP [16]
(more on this model checker in Section 5.3). Next to that, in order to strive for precision in
proofs, an important research area is to use theorem provers such as PVS [38] to help

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 77

in finding and checking derivations in µCRL. A large number of distributed systems
have been verified in µCRL, often with the help of a proof checker or theorem prover
[18,24].

We will give a short overview of the language. For a complete reference, see [19].
Data types. Initially there are no data types known in a µCRL specification. Therefore

each specification should start by defining the necessary data types and the functions that
work on them. In fact, it is mandatory to define the boolean type in each specification,
since the conditional construct works with boolean expressions. In the case of the turn-
table model, the natural numbers were also defined. One can virtually define any data
type.

In µCRL one can specify abstract data types [33] in an algebraic way, with an explicit
recognition of so-called constructor function symbols, which intuitively cannot be elimi-
nated from data terms [19]. In the case of natural numbers the zero (0) and the successor
function S are constructors, while addition (plus) is not. For booleans we have the con-
structors true (T) and false (F). This explicit recognition of constructor symbols makes it
possible to enumerate the elements of a data type.

To define a data type one uses the keyword sort. A sort represents a non-empty set of
data elements. To declare the sort of booleans one can write:

sort Bool

Now the elements of the data type can be declared. This is done with the keywords func
and map. A constructor symbol, declared with func, has as target the data type in question.
For the booleans we declare T and F both with func:

sort Bool
func T,F:→Bool

What we state here is that the elements of Bool are T and F.
Now that the structure of the data type is given, one can add additional functions. These

can be defined with map. For the booleans we define the function and and the equality
relation eq.

Using rewrite rules one can now define how the functions work. When defining, it is
allowed to use variables, which have to be defined first using var. Having added the rewrite
rules for and and eq, the declaration of Bool now looks like this:

sort Bool
func T,F:→Bool
map eq:Bool#Bool→Bool

and:Bool#Bool→Bool
var x,y:Bool
rew eq(x,x) = T

eq(T,F) = F
eq(F,T) = F
and(T,x) = x
and(x,T) = x
and(F,x) = F
and(x,F) = F

78 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

In a similar way one can define the sort of natural numbers with the equality relation eq
and the addition function plus:

sort Nat
func 0:→Nat

S:Nat→Nat
map plus:Nat#Nat→Nat

eq:Nat#Nat→Bool
var x,y:Nat
rew plus(x,0) = x

plus(x,S(y)) = S(plus(x,y))
eq(x,x) = T
eq(0,S(x)) = F
eq(S(x),0) = F
eq(S(x),S(y)) = eq(x,y)

Actions. In µCRL one can declare actions in the act section of a specification. These
actions may have zero, one or several data parameters. When parameters are used the data
types of these parameters need to be given. In the next example an action a is defined
without a parameter, an action b is defined with a parameter of type Bool and an action c
is defined with two parameters of type Nat and Bool respectively:

act a
b:Bool
c:Nat#Bool

One can allow processes P and Q to communicate in the parallel process P || Q. To do
this it is possible to define which actions are able to synchronize with each other using the
keyword comm. The following example states that the actions d and e can synchronize and
form the action f together:

comm d | e = f

Finally the process deadlock (δ), which cannot terminate successfully, and the internal
action τ are predefined.

Operators. There are eight operators in µCRL. We present each one of them with an
informal semantics.

(1) The alternative composition operator (+). A process p+q proceeds (non-deterministi-
cally) as p or q (if they can proceed).

(2) The sum operator (
∑

d:D X(d)), with X(d) a mapping from the data type D to pro-
cesses, behaves as X(d1) + X(d2) + . . ., i.e., as the possibly infinite choice between
X(d) for any data term d taken from D. This operator is used to describe a process
that is reading some input over a data type [34].

(3) The sequential composition operator (.). A process p.q proceeds as p followed by
q.

(4) The process expression p � b � q where p and q are processes, and b is a data term
of data type Bool, behaves as p if b is equal to T (true) and behaves as q if b is
equal to F (false). This operator is called the conditional operator, and operates as a
then_if_else construct.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 79

(5) The parallel operator (||). A process p || q executes p and q concurrently in an
interleaved fashion, i.e. the actions of p and q are executed in arbitrary order. For all
actions a and b which can communicate with each other: If one process can execute
a and the other one can execute b then p and q can communicate (p || q executes the
communication action).

(6) The encapsulation operator (∂H). A process ∂H(p) disables all actions of p that occur
in the set H ⊆ Act. Typically this operator is used to enforce that certain actions
synchronize.

(7) The renaming operator (ρf), with f: Act→Act, is suited for reusing a given speci-
fication with different action names. The subscript f signifies that the action a must
be renamed to f(a). The process ρf(p) behaves as p with its action names renamed
according to f.

(8) The abstraction operator (τI). A process τI(p) ‘hides’ (renames to τ) all actions of
p that occur in the set I ⊆ Act.

Process definitions. The heart of a µCRL specification is the proc section, where the
behavior of the system is declared. This section consists of recursion equations of the
following form, for n � 0:

proc X(x1:s1, . . ., xn:sn) = t

Here X is the process name, the xi are variables, not clashing with the name of a function
symbol of arity zero nor with a parameterless process or action name, and the si are sort
names, expressing that the data parameters xi are of type si. Moreover, t is a process
term possibly containing occurrences of expressions Y(d1, . . . , dm), where Y is a process
name and the di are data terms that may contain occurrences of the variables x1, . . . , xn.
In this rule, X(x1, . . . , xn) is declared to have the same (potential) behavior as the process
expression t [19].

The initial state of the specification is declared in a separate initial declaration init
section, which is of the form

init X(d1, . . ., dn)

Here (d1, . . . , dn) represents the initial behavior of the system that is being described. In
general, in µCRL specifications the init section is used to instantiate the data parameters
of a process declaration, meaning that the di are data terms that do not contain variables.
The init section may be omitted, in which case the initial behavior of the system is left
unspecified.

The time model. Delaying for a certain amount of time is impossible in µCRL at first
glance. This is because µCRL does not work with time. A later extension of µCRL to timed
µCRL [23] introduced the notion of time. However, at present creating a timed µCRL
specification is not very practical since the µCRL toolset can only parse timed µCRL code
and cannot generate a state space from it.

There is another way however to simulate some notion of discrete time. In this paper
we use a method based on the one from [11]. In short it works like this: first we define
two actions: tick and tick2. The tick action represents the end of a time slice and the
beginning of a new one. In order to share this notion of time all running processes need
to synchronize their tick actions. If at least one of these processes is busy and therefore
unable to perform a tick the tick action will not take place. This synchronization aspect is

80 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

essential if one wants to use global timing. Note that, using this technique, we get discrete
time in µCRL, since we represent a time period as a number of time units.

In most cases when using time in a model the modeler would like to give normal actions
priority over tick actions. In order to realize this χ has implicit maximal progress, but in
µCRL an operator for this does not exist. We can however get similar results by using
the tick2 action and post-processing the system after linearization (more on the latter in
Section 5.2).

The differences between tick2 and tick are the following:
• The action tick is used for translating delays, while tick2 is used to make an action

delayable (which means adding a tick2 self-loop as an alternative to this action);
• A tick action can synchronize with any number of tick or tick2 actions, but a tick2

action cannot synchronize with only tick2 actions (at least one tick action is needed
for going from one time unit to the next).
Now, several delayable processes can delay together if there is a tick action enabled in

at least one process.

5.2. The turntable model in µCRL

In the next few paragraphs we will look at the µCRL model of the turntable which
resulted from translating the original χ model. The µCRL language will be explained as
far as needed. Translating the turntable model was done in an intuitive fashion in order
to get some inspiration for developing a translation scheme for translating χ specifica-
tions to µCRL specifications. In this paper therefore the way in which we ended up with
this µCRL model will not be discussed in detail. We restrict ourselves to highlighting the
interesting parts. Translating χ constructs like an assignment, a skip statement, a sequen-
tial composition and a guard can be done straightforwardly since there exist similar con-
structs in µCRL. Here we have to note that except for translating the atomic processes
all other translations involve the usage of a program counter n. This counter is used to
control the order of execution within a process. Initially, when a process starts its exe-
cution, the counter equals zero. By changing the value each time an action is executed
and including the counter in the guards accompanying the actions one can specify the
order in which these actions should be executed. Since we translated χ processes to Linear
Process Equations (LPEs) we needed such a counter to translate (for instance) sequential
compositions. Later in this section a definition of LPE can be found. How the program
counter functions in practice will become apparent when looking at the translations in the
next few paragraphs.

Following are remarks on the constructions that could not be translated in an obvious
way:
• In the µCRL model we move from one time slice to the next by synchronizing tick

actions of all the processes in the system. This means that we use discrete timing. Delays
in χ should therefore always be ‘discretizable’. A χ delay of n time units is then trans-
lated to n tick actions placed in sequence.

• The usage of time in combination with communication actions is tricky when trans-
lating. If you have a send action in one process and a corresponding receive action in
another which (if any) of the actions can be delayed until the other action can be exe-
cuted ? In principle both send and receive actions are delayable in χ . The maximal pro-
gress operator then ensures that possible communications get a higher execution priority

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 81

than a delay. In other words: Both send and receive actions can delay if communication
is not possible. Once communication is possible it will be executed immediately.
In µCRL however, making all send and receive actions delayable may result in commu-
nications being delayable as well, since we cannot assign different priorities to actions
(see the time model paragraph in Section 5.1); there is no maximal progress operator.
Communications that turn out to be delayable in the µCRL specification are therefore
bad translations. These can be fixed once the specification is linearized using the µCRL
toolset though: The linearized version can be (automatically) manipulated in such a way
that these communications become non-delayable again. In short, to do this the guards
of all tick actions have to be changed in such a manner, that tick actions only become
enabled if no ‘normal’ (non-tick) action is.

• Another problem is translating an alternative composition: How to translate it depends
on the number of alternatives that begin with a delay or are delayable. This is due to
the weak time determinism principle [6]: The passage of time cannot result in making
a choice between the alternatives that can perform the time transition. In other words:
Can both alternatives perform a delay, then they can delay together after which a choice
can still be made. This principle led basically to two different possible translations of
an alternative composition when translating the turntable model:

(1) None of the alternatives begin with a delay. We can translate this statement using
the program counter in the right way; both alternatives are enabled at the start by
extending the guards of both first actions of these alternatives with the same equation
concerning the value of the program counter.

(2) The left alternative is delayable and the right alternative begins with a delay. This
functions as a time-out: If you can start executing the left alternative within the time
given by the delay of the right alternative, do that. Otherwise execute the right alter-
native. This can be translated by introducing a time counter initially having the value
of the delay of the right alternative. Then we add an extra line to the process where
the process can execute a tick and decrease the time counter by one as long as the
time counter does not equal zero. Using some additional guards makes the transla-
tion complete. This situation can be found later on in this paragraph in the process
TESTER_CONTROL. Note however that there will not be maximal progress in this sit-
uation, so processing the linearized version is necessary (see the paragraph on the
time model in Section 5.1).

• In LPEs we are not allowed to use parallelism, as can be seen by looking at their defi-
nition later on in this section. In the χ turntable specification however there are two
instances where we find parallelism inside a process: In the drill process and in the
main_control process.

The nested parallelism in the drill process can be easily translated by really translat-
ing the two subprocesses of drill to separate processes and placing them in parallel in
the init line.

The second instance however poses a bigger problem since the subprocesses share
variables. Since we cannot use shared variables in µCRL we have to find some other
way to translate this construction. We do that by translating the subprocesses to indi-
vidual processes and providing each process with local copies of the shared variables.
Say two processes A and B share a variable named x. Both processes can read the value
of x at all times, but if one of them changes the value the other one should be aware of
this (and change the value of its own ‘copy’ of x likewise). To make this possible a new
action assignx is introduced, which is called by a process if it has changed the value

82 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

of x. As a parameter the new value should be given. This action communicates with
another action updatex, which can be executed by the other process at all times. This
last thing is very important, since an assignment should proceed as soon at it is invoked.
Once the other process can communicate via updatex it receives the new value for x
and assigns this to the local copy.

This does not solve the problem yet though; in the main_control process we can
identify four subprocesses running in parallel followed by a fifth subprocess placed
sequentially behind these four. Since in the init line all processes need to be placed
in parallel we have to force this order of execution upon the five processes which are
translations of the five χ subprocesses. We can do that by introducing some extra actions
which synchronize between all the processes (this is done in a way similar to how it is
done for tick); all processes start their execution once they can synchronize on the
start action. Then the four placed in parallel begin while the fifth process starts wait-
ing for the other four to finish. Once the four processes in parallel are finished with
their execution, they synchronize their stop actions with the start2 action of the fifth
process. Then this process starts the execution. Once it is finished it synchronizes its
stop2 action with those of the other four processes, after which all processes can start
all over again. The actual processes (named MAIN_CONTROL1 through MAIN_CONTROL5)
will be treated later on.

The data types. First of all a µCRL model starts by defining the data types used. As
is the case with most models the data types Bool and Nat are used (representing booleans
and natural numbers respectively). See Section 5.1 for part of their definitions.

The µCRL turntable model uses a third data type though, which is used for readability
and represents the state of a slot; a slot can be in one of the following states:
• There is no product in the slot (NoProduct);
• There is a product in the slot which is not drilled and not tested yet (Product);
• There is a product in the slot which is drilled but not tested yet (Drilled);
• There is a product in the slot which is drilled and had a bad test result (TestedBad);
• There is a product in the slot which is drilled and had a good test result (TestedGood).

This data type is called SlotState.

Linear process equations. When translating we used Linear Process Equations (LPEs).
The definition of an LPE is as stated in [9]. We chose to translate χ processes to LPEs
instead of the more general µCRL processes since LPEs proved to be better suited for
setting up a general translation scheme. An LPE is of the following form:

X(d:D)=
∑

i∈I

∑

ei∈Di
ai(fi(d, ei)).X(gi(d, ei)) � hi(d, ei) � δ+

∑

i∈I′

∑

ei∈D′
i

a′
i(f

′
i(d, ei)) � h′

i(d, ei) � δ

where I and I’ are finite index sets, D, Di, D′
i, Dai and Da′

i
are data types, ai, a′

i ∈ Act ∪
{τ}, ai : Dai , a′

i : Da′
i
, fi : D × Di → Dai , f′

i : D × D′
i → Da′

i
, gi : D × Di → D, hi : D ×

Di → Bool and h′
i : D × D′

i → Bool.
Here the different states of the process are represented by the data parameter d:D. Type

D may also be a Cartesian product of n data types. Besides that the data parameter ei (either
of type Di or D′

i) can influence the parameter of action ai (or a′
i), the condition hi (or h′

i)

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 83

and the resulting state gi (if the process does not terminate), thereby giving LPEs a more
general form. The data parameter ei is typically used to let a read action range over a data
domain.

The LPE expresses that in state d it can do two things:
(1) One can perform actions ai, carrying a data parameter fi(d,ei), under the condition

that hi(d,ei) is true; in such a case the resulting state is gi(d,ei) [19].
(2) One can perform actions a′

i, carrying a data parameter fi’(d,ei), under the condi-
tion that fi’(d,ei) is true; after executing one of these actions the process termi-
nates.

In general, when translating a χ process to an LPE the locally defined variables si in
the scope operator of χ should be translated to parameters of the LPE (in other words,
should become part of the data parameter d:D). The initial values of these variables can
be set at the initialization line. Channels in χ that a process works with are mentioned as
parameters of that process. These should not be included in the LPE. An LPE can work
with communication actions which are defined globally. More on communication actions
in the next paragraph.

The actions and communication rules. The turntable model contains a lot of different
channels. We will not provide a full list here; that can be obtained from looking at the
paragraph about the original χ model. Here we only give a guideline how to translate
channels to pairs of actions. In general the usage of a channel a in the χ model will be
translated as follows:

(1) Sending a message over channel a will appear in the LPEs as the action sa with
possibly a value as a parameter being the message sent; if no parameter is provided
the send functions as a trigger for a certain event.

(2) Receiving a message over channel a will appear in the LPEs as the action ra or∑
y:Type(ra(y).X(y)) depending again on the fact whether the receive action

functions as a trigger for an event or really for receiving a value (of type Type)
respectively.

(3) For these two actions a communication rule must be specified which looks like this:
sa | ra = ca. This together with the encapsulation operator (∂{sa,ra}) forces the
actions sa and ra to only execute if they can synchronize.

Next we will look at interesting parts of some of the processes to give an idea of how
the translation is done.

The turn_table process. The first process we look at is the turn_table process. Here is
part of the µCRL specification:

proc TURN_TABLE(n : Nat, bS1 : Bool, bS2 : Bool, bS3 : Bool) =
sS1(bS1).TURN_TABLE(0, bS1, bS2, bS3) � n = 0 � δ +

. . .

rEnvAdded.TURN_TABLE(0, T, bS2, bS3) � n = 0 � δ +

. . .

τ.TURN_TABLE(0, bS1, bS2, F) � n = 1 � δ +∑

b:Bool
rUpdateS1(b).TURN_TABLE(0, b, bS2, bS3) � n = 0 � δ +

. . .

84 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

∑

b:Bool
rRotate(b).TURN_TABLE(2, bS1, b, bS3) � n = 0 � δ +

tick.TURN_TABLE(3, bS1, bS2, bS3) � n = 2 � δ +

. . .

τ.TURN_TABLE(0, bS1, F, bS3) � n = 6 � δ +

tick2.TURN_TABLE(n, bS1, bS2, bS3) � n = 0 � δ

In every µCRL process of the turntable specification the program counter n is used
to control the order of action execution. Initially this n equals 0. Therefore the program
can start execution only by performing one of the actions for which the accompanying
guard includes the conjunct n=0. The turntable for instance initially has several alternative
options:
• It can send the value of any of the three sensors S1, S2 and S3. The state will not change

after this.
• It can receive the message that the environment has received a new product or that a

product has been removed. This will change the state in the obvious way.
• It can get new values for the sensors S1 and S3. These will be set.
• It can receive the request to rotate. Rotating takes four time units.
• The lines beginning with τ are in fact translations of χ assign actions.
• The line beginning with tick2 is there to make some actions delayable. The guard tells

us which actions they are (see the paragraph on the time model in Section 5.1).

The tester_control process. The tester_control process controls the testing procedure.
The following is part of the translation of the original process:

proc TESTER_CONTROL(t : Nat, n : Nat, bTstRes : Bool) =
. . .

rTesterDownDone.TESTER_CONTROL(0, 3, T) � n = 2 � δ +

tick.TESTER_CONTROL(t − 1, n, bTstRes) � n = 2 ∧ t /= 0 � δ +

τ.TESTER_CONTROL(0, 3, F) � n = 2 ∧ t = 0 � δ +

. . .

The sequence of actions starts when the command is received to start testing. Then
TESTER is given the command to move the testing device. Should the message return within
4 time units after the testing device has been lowered, then bTstRes is set to true, otherwise
to false. Note here the usage of counter t, which indicates the number of time units left
before the time out ends. Next the testing device is raised and the result (the value of
bTstRes) is sent to the MAIN_CONTROL process.

The main_control subprocesses. Finally the most important and complicated process
is the main_control process. As can be seen in the χ specification this process really con-
sists of five subprocesses, with at first four of them running in parallel after which a fifth
starts execution. Once the fifth subprocess has finished the four others restart etc. Since the

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 85

subprocesses share some variables this requires special attention when translating. Basi-
cally each of the subprocesses is translated to an LPE using several special actions to
synchronize the values of the local copies of the originally shared variables.

The first subprocess is called MAIN_CONTROL1. Part of it is given here:

proc MAIN_CONTROL1(n : Nat, p0, . . . , p3 : SlotState) =
∑

s:SlotState
updatep0(s).MAIN_CONTROL1(n, s, p1, p2, p3) +

. . .

start.MAIN_CONTROL1(1, p0, p1, p2, p3) � n = 0 � δ +

sEnvCanAdd.MAIN_CONTROL1(2, p0, p1, p2, p3)� n = 1 ∧ p0 = NoProduct � δ +

stop.MAIN_CONTROL1(4, p0, p1, p2, p3) � n = 1 ∧ p0 /= NoProduct � δ +

rEnvAddFinished.MAIN_CONTROL1(3, p0, p1, p2, p3) � n = 2 � δ +

stop.MAIN_CONTROL1(4, p0, p1, p2, p3) � n = 3 � δ +

stop2.MAIN_CONTROL1(0, p3, p0, p1, p2) � n = 4 � δ +

tick2.MAIN_CONTROL1(n, p0, p1, p2, p3)

The first four lines show update actions which can be executed at any time due to the
fact that there are no guards. The encapsulation operator together with the synchronization
rules provided in the µCRL specification however force the update action only to take
place if another process executes the corresponding assign action. These update actions
make sure that the process always works with the latest values of the variables p0, p1, p2
and p3.

The process itself ensures that products are added to the turntable. It starts executing
once it can synchronize its start action with the start actions of the other subprocesses.
Then if there is no product in slot p0 available it sends the command to add a product.
Once it has received the message that the product adding has finished it stops execution.
Notice (this remark also holds for the other four subprocesses) that after executing stop2
the values of the slots are moved to the next slots of the turntable. In other words, the effect
of a rotation is here expressed; each product moves to the next position of the turntable. In
the original specification this rotation cannot be found at this place, but it is needed in the
translation in order to prepare for the rotation happening in the fifth subprocess.

The last subprocess which runs after the others have stopped executing is called MAIN_
CONTROL5. Part of its translation is the following:

proc MAIN_CONTROL5(n : Nat, x : Bool, p : Nat, p0, . . . , p3 : SlotState) =
. . .

τ.MAIN_CONTROL5(9, x, p, p3, p0, p1, p2) � n = 8 � δ +

. . .

Rotating the turntable in a 90° turn can be done with one τ action compared to the
four actions in the original χ specification. To rotate the table in the χ specification four
assignments need to be done to update the slot states. In µCRL it is possible to provide the
new values of all four states at once as parameters of a recursive call.

86 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

The initialization line. Now that all the processes have been translated all that remains
is writing the right initialization line. In this line two special operators are used:
• The first one is | {tick} |, which is basically a parallel composition operator which

forces tick and tick2 actions of the two processes to synchronize. For a better under-
standing of this usage of time see the paragraph on the time model in Section 5.1.

• The second one is | SVTPC | which functions as a parallel composition operator that
synchronizes both time (like the operator stated above) and assign/update actions that
are needed to use shared variables (for the usage of shared variables see the remark at
the beginning of this section).

5.3. Verification of the model in CADP

From the µCRL specification a state space in the .aut format was generated by the
µCRL toolset [10]. This state space could then be used by the verification tool CÆSAR
ALDÉBARAN Development Package (CADP) [16]. Using this tool one can express prop-
erties in the regular alternation-free logic µ-calculus [35]. These properties can then be
verified on the state space generated from the model. The CADP tool, together with µ-
calculus, was used for verifying the properties of the turntable model.

The state space. After having translated the χ specification, the state space of the µCRL
specification was generated using the µCRL toolset. This took about 8 s, resulting in a state
space of 25,926 states and 50,835 transitions (12,957 of them were τ -transitions). After
reduction modulo branching bisimulation [37] we ended up with a state space consisting
of 4687 states and 7579 transitions, of which 931 were τ -transitions.

When looking at the state space itself, we noticed the following differences:
• While the state space resulting from the χ specification shows assignments as actions,

these cannot be found in the state space generated from the µCRL specification. Instead
one finds τ actions in these places. In short, µCRL does not have assignment actions.
Instead one assigns new values to parameters of a recursion variable. Because by the
definition of LPE a recursion variable has to be preceded by an action an assignment is
translated to τ .

• In the fifth main controller subprocess of the χ specification multiple assignments were
used for rotating the turntable 90°. These assignments together were translated to a
single τ action followed by a recursive call containing the new values of the parameters,
thus resulting in a smaller state space.

• Special actions that were added to the translation, such as start and stop, did not
show up in the state space due to the fact that they were hidden. It was chosen to do this
because then the state space would become smaller (after reducing modulo branching
bisimulation) while these actions are not important for verifying properties of the system
anyway. By hiding these actions we also accomplished that the state space generated
from the µCRL specification more resembled the state space generated from the χ

specification.
• Delays need more states and transitions in the state space generated from the LPEs than

in the state space generated from the original χ specification. This is because a delay
of n time units takes up n states and n transitions in the state space generated from the
LPEs.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 87

The regular alternation-free µ-calculus. To express the turntable properties we used
the regular alternation-free µ-calculus. In this section a brief introduction to the syntax,
that is relevant for understanding the formulas in this chapter, will be given. For a more
detailed description see [35].

The regular alternation-free µ-calculus can only be used to express action-based for-
mulas. There exists a more elaborate version of this logic which can express temporal
properties involving data values, but that one is not supported (yet) by CADP.

A regular formula is built by providing a sequence of actions. We can place actions in
sequence using the “.” operator. Names of actions are placed between double quotes (").
At places where the name of the action is not important we can write true. So a statement
like "a".true."b" means “first we encounter an action a, then some other action followed
by an action b”.

We can use repetition by using the operator “∗”, which denotes that the statement pre-
ceding it can be executed zero or more times.

We have a possibility and a necessity modal operator. Using these on regular formulas,
we create state formulas. The possibility modal operator (“< >”) is used here in the form
“<R>true” to express that there exists an execution path in the state space for which the
regular formula R holds. The necessity modal operator (“[]”) is used here in the form
“[R]false” to express that for all execution paths in the state space the regular formula R
does not hold.

Concluding we have the minimal fixed point operator (“µX.”) with X being a proposi-
tional variable. A state satisfies “µX.F” (with F being a state formula) iff it belongs to the
minimal solution of the fixed point equation X = F(X), where X denotes a set of states in
the state space.

Finally an example: The formula ["a"*.true*."b"]false expresses that for all exe-
cution paths in the state space we do not find zero or more actions a, followed by zero or
more other actions, followed again by one action b.

Verifying properties. Now, using the state space, one can start verifying system prop-
erties. Here we look again at the properties initially given in the chapter on the turntable
description.

(1) The system does not contain a deadlock. The absence of deadlock was verified in
the CADP tool, which has this functionality built-in.

(2) If drilling (testing, adding or removing) is started then it is also finished.
The turntable does not rotate in the meantime. This property is checked in
two steps. First we check the liveness property “if drilling is started then it is also fin-
ished” by using this formula: [true*."cStartDrill"]µX.(<true>true
and[not"cDrillEnded"]X)
Then we check the safety property “it never occurs during drilling that the turntable
rotates” with this formula:

[true*."cStartDrill".(not"cDrillEnded")*."cRotate"]false

(3) If the product has a bad test result it remains on the table and is drilled again
(when it comes to the drilling position). This property is checked in two steps. The
first formula is used to check, that it never occurs that a product with a bad test result
is removed from the table:

88 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

[true*."cTested(F)".(not"cRotate")*."cRotate".

(not("cRotate")*."cEnvRemoved"]false

It expresses that in no execution path of the state space will you encounter a failed
test (cTested(F)) followed (after having done one rotation) by the removal of this
product.
In the second formula it is checked that it never occurs that a product with a bad test
result is not drilled again after three rotations:

[true*."cTested(F)".(not"cRotate")*."cRotate".

(not"cRotate")*."cRotate".(not"cRotate")*."cRotate".

(not"cStartDrill")*."cRotate"]false

(4) If the product has a good test result then the remover will be called to remove
the product. In other words, it will never happen that for a product with a good
test result the remover is not called to remove the product. This is represented in
µ-calculus by the formula:

[true*."cTested(T)".(not"cRotate")*."cRotate".

(not"cEnvCanRemove")*."cRotate"]false

(5) No drilling (testing or removing) takes place if there is no product in the slot
and no adding can be performed if there is a product in the slot. Because of
the usage of the regular alternation-free µ-calculus one can only verify action-based
properties, but state-based properties can in general be checked in an action-based
way by first changing the model slightly [37]. In essence what happens is that if you
want to check the value of parameter x of process X you extend the specification
of X so that it can perform an action having x as a parameter that does not have a
real effect on the system. For this one can define a special action. Moreover, after
executing this action the process returns to the state where it was when starting the
action. In other words, the process performs a self-loop. Although this does not have
an effect on the behavior of the system, it does provide the ability to see the value
of x at any given time in the state space, since all states are now equipped with a
self-loop of this action with the value of x visible as a parameter.
In this case one of the subprocesses of the main control has been equipped with a
self-loop executing the action inslot1, which tells whether a product is currently in
slot 1 or not. Now we can state in µ-calculus:

[true*."inslot1(F)"."cStartDrill"]false

This expresses that you can never encounter an inslot(F) action (there is no product
in slot 1) just before cStartDrill.

In a similar way one can equip one of the subprocesses of the main control with
a self-loop containing the action inslot0, which provides info on whether slot 0
contains a product or not. Then we can express in µ-calculus the property that no
adding can be performed if there is a product in the slot:

[true*."inslot0(T)"."cEnvCanAdd"]false

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 89

(6) Every added product is drilled in the next rotation. In other words, it never occurs
that an added product is not drilled in the next rotation. In µ-calculus this leads to:

[true*."cEnvAdded".(not"cRotate")*.

"cRotate".(not"cStartDrill")*.

"cRotate"]false

(7) Every product eventually leaves the table. It is a fairness property in the sense that
the reachability of the action cEnvRemoved is checked in fair execution sequences.
In µ-calculus the notion of “fair reachability of predicates" is used for fairness, as
already stated in Chapter 1. To prove this property the model needs to be slightly
changed so it supports colored products; a product can be either red or white. This is
done by extending the sort SlotState. Next the env_add process is extended so that
it ensures that it will constantly add white products except in at most one instance:
Then it adds a red product. This red product can now easily be tracked at any time.
Using this changed model it is possible to prove the fairness property.
As an intermediate property, first we prove that in an execution sequence one can
never encounter more than one red product:

[true*."cEnvAdded(Red)".true*.

"cEnvAdded(Red)"]false

Next using this transformed model one could express the property as follows:

[true*."cEnvAdded(Red)".

(not"cEnvRemoved(Red)")*]

<(not"cEnvRemoved(Red)")*.

"cEnvRemoved(Red)">true

This states that once a cEnvAdded(Red) action is encountered it is always possible
to execute the action cEnvRemoved(Red) down the line.

(8) When a product is added it takes between 21 and 30 time units to get its test
result. This property is checked by using the model with colored products, since we
need to track a product to know how many time units it takes to get from having been
added to having been tested. This model is changed so that the actions cEnvAdded
and cTested provide us the information (as an argument) what the color is of the
product that has been added or tested respectively. In µ-calculus we can then write a
number of formulas:
• No paths exist with 20 tick action or less between cEnvAdded(Red) and cTest-
ed(Red);

• There exists a path with exactly 21 tick actions between cEnvAdded(Red) and
cTested(Red);

• There exists a path with exactly 30 tick actions between cEnvAdded(Red) and
cTested(Red);

• No paths exist with 31 tick action or more between cEnvAdded(Red) and cTest-
ed(Red).

90 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

The actual formulas will not be presented here as they are rather large and really not
that interesting, since they can be created straightforwardly. When verifying these
formulas we get the information from CADP that there exists a path with exactly 21
tick actions but not one with less. Besides that we also find a path with 30 tick
actions while we cannot find one with a larger number.

6. UPPAAL

6.1. Introduction to UPPAAL

UPPAAL is a tool for modeling, simulation and verification of real-time systems that
can be modeled as a collection of non-deterministic processes with finite control structure
and real-valued clocks. The UPPAAL tool creators had two main aims in mind: efficiency
and ease-of-use. For the latter reason UPPAAL has a well-developed and documented GUI
and all formal definitions and semantics are hidden from the user. The formal syntax and
semantics are described in [36].

UPPAAL allows to make random or directed simulation and verify the models on-the-fly.
Different methods can be used to reduce the amount of the memory used during verifica-
tion. The state space reduction options (conservative or aggressive) allow to generate a
smaller state space but require more time. It is also possible to choose different kinds
of the state space representation, like difference bound matrices, the compact data struc-
ture, under approximation (by bit-state hashing), and over approximation (by convex-hull
approximation) [31]. More detailed information about UPPAAL can be found in [30,36]. In
this document we give a short description of the UPPAAL timed automata.

A model in UPPAAL consists of a network of timed automata with clocks, invariants,
variables over basic data types, guards, handshake synchronization, urgency, and commit-
ted locations. UPPAAL has a continuous time model (real-valued clocks). However, bounds
of clocks and clock reset values must belong to the set of nonnegative integers.

A timed automaton consists of a directed control graph with labels on locations and
edges; every timed automata must have one location marked as initial. Locations can be
equipped with an invariant. Edges can carry guards, assignments, and synchronization sig-
nals. It is supposed that the invariants, guards, synchronization parts and assignments are
always given, in case of absence the invariants and guards can be represented by constant
true; synchronization and assignment parts can be empty.

All UPPAAL timed automata work in parallel. Nested parallelism is not allowed. UP-
PAAL allows rendezvous and broadcast synchronization via the unidirectional channels.
Shared variables are used to communicate values from one process to another. Channels
declared with prefix “urgent” perform synchronization without delay if synchronization is
possible. On synchronizing edges, the assignments on the sender side are evaluated before
the assignments on the receiver side.

The scope of the elements (variables, constants, clocks and channels) can be either
global, i.e. visible in the whole system, or local, i.e. visible only in the process in which
the element was declared. Global variables are declared in the global declaration part and
local ones are declared in the declaration part of the corresponding process.

There are four predefined types (bool, int, clock, chan) in UPPAAL. It is possible to
use arrays (including channel arrays and multidimensional ones) and to define a range of
integers (ranges reduce the state space).

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 91

6.2. The turntable model in UPPAAL

In this chapter, we explain gradually how the χ processes can be represented as UPPAAL

timed automata. First, we mention the main problems of the translation. Then, we describe
the declaration of the channels, clocks and variables. After that, we give the description
of all UPPAAL processes explaining how χ process terms and operators were translated.
When an element (process or operator) first occurs its translation is explained in detail. We
also mention how the resulting timed automata can be simplified.

Translation problems. As it was already mentioned, the translation of the turntable
model from χ into UPPAAL timed automata given in this paper is not formal. In some cases,
the ways of translating different χ processes or operators are specific for the turntable
model and cannot be considered as generic.

The main problem is the translation of the nested parallelism in the main_control pro-
cess. The nested parallelism can be translated by dividing the process into several parallel
ones. The difficulty consists in the fact that main_control can continue working only when
the parallel processes have finished. That means that we have to use additional shared
variables as flags and additional communication. The more detailed description can be
found in the main_control translation part.

The other difficulty lies in the translation of the maximal progress. In UPPAAL a delay
can be performed only in locations. To implement maximal progress every edge must sat-
isfy one of the following conditions:
• the edge contains urgent synchronization;
• the edge has a clock guard with equality;
• the edge has urgent or committed input location.

Note that edges with synchronization over urgent channels cannot carry clock guards.

Declaration. As it was already mentioned, in UPPAAL values cannot be transmitted
through channels. That is why we have to declare additional global variables for every
channel through which the value is passed. For instance, the global boolean variable
b_UpdateS1 is used to transmit the values through the channel cUpdateS1. Note, that
in the χ model some channels are used only for synchronization and the values that are
transmitted through these channels are not actually used. To improve the readability and
reduce the state space these variables are not translated. All the channels are declared as
the urgent ones in order to implement maximal progress.

In the χ model we use the variables p0, p1, p2, p3 to store the information about the
slots and the current product states. To improve the readability of the model we declare
the variables as an array (int[0,4] p[4] := {0,0,0,0}). Note, that we define the range of the
values that can be stored in the array (from 0 to 4) because it also reduces the state space.
This array is declared globally, as well as four additional variables (bStartP0, bStartP1,
bStartP2, bStartP3). This is done in order to translate nested parallelism; more details can
be found in the description of the main_control process.

The clocks and local variables are declared locally in the declaration part of the corre-
sponding processes.

The turn_table process. In the turn_table process, the channels are mostly used to
transmit values. In that case, the corresponding edge has the synchronization part with send
or receive signal (for instance, cS1! or cUpdateS1?) and the assignment part

92 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

(for instance, b_S1 := bS1 or bS1 := b_S1 respectively). In the assignment part the new
value is assigned to (or read from) the corresponding global variable. In Uppaal the assign-
ment part of the sender is always executed before the assignment part of the receiver. Note,
that the value that is sent through the channels cEnvAdded and cRotate is always true. This
allows us to avoid the usage of additional global variables while keeping the behavior of
the model unaltered.

After the signal cRotate the process must delay. In UPPAAL, a delay can be performed
only in a location. To translate the delay we have to declare the clock (locally). Before the
delay the clock must be reset to 0 in the assignment part of the ingoing edge (clTurning :=
0). Then, the process is allowed to delay in the location. During the delay the value of the
clock is increased and the invariant on the location makes sure that the value of the clock
will not exceed the value of the timeout (clTurning � 4). The guard (clTurning == 4) on
the outgoing edge ensures that the process delays in the location for the exact number of
time units and will not leave the location earlier (Fig. 3a).

In order to translate the sequential composition (cRotate?bS2; �4), the end location of
the timed automaton that corresponds to cRotate?bS2 should be merged with the input
location of the timed automaton that corresponds to the delay. The resulting timed autom-
aton is depicted in Fig. 3b (note, that the initial location is marked with double circle).
As one can see, the merged location is defined as a committed one, this is done to make
sure that the process will not delay in this location. In UPPAAL several assignments can
be combined in the assignment part of the same edge. In this case, they are performed
sequentially. This possibility allows us to simplify the automaton (Fig. 3c).

In order to translate the alternative composition of the created timed automata we merged
their input locations into the one and did the same with their end locations (Fig. 4). From
the united input location the process can synchronize with other processes. If there is no
synchronization available the process delays in the input location. If several of them are
available the choice is made in a non-deterministic way. This behavior corresponds to the
alternative composition in χ .

To translate the repetition operator, we need to add an edge from the end location of the
process to its input location. The edge is marked with (∗) in Fig. 4. Again, in order not to
allow the process to delay in its former end location this location is labeled as a committed
one. Knowing that the process must leave this location immediately we can get rid of it.
The translation of the turn_table process into the UPPAAL timed automaton is depicted in
Fig. 5.

(a) clTurning <= 4

clTurning := 0 clTurning == 4

(b) clTurning <= 4cRotate?

bS2 := true clTurning := 0 clTurning == 4

(c) clTurning <= 4

bS2 := true
clTurning := 0

cRotate?

clTurning == 4

Fig. 3. Delay and sequential composition.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 93

idle turning

clTurning <= 4

(*)

cRotate?
clTurning:=0, bS2:=true

clTurning == 4
bS2:=false

cS1!
b_S1:=bS1

cEnvAdded?
bS1:=true

cUpdateS1?
bS1:=b_S1

Fig. 4. Alternative composition and repetition.

idle
turning

clTurning <= 4

cRotate?
clTurning:=0, bS2:=true

clTurning == 4 bS2:=false

cS1!
b_S1:=bS1

cS2!
b_S2:=bS2

cS3!
b_S3:=bS3

cEnvAdded?
bS1:=true, nPa++

cEnvRemoved?
bS3:=false, nPr++

cUpdateS3?
bS3:=b_S3

cUpdateS1?
bS1:=b_S1

Fig. 5. The translated part of the turn_table process.

The clamp process. The translation of the clamp process is similar to the translation
of the turn_table process. Note, that in the case of the sequential composition of the
delay and synchronization (� 2; cLocked!true) we cannot combine the clock guard
(clClamp == 2) with the synchronization cLocked!assigning them to the same edge.
The reason for it is that according to the χ semantics, the process must perform
synchronization after the delay if it is possible, otherwise it can delay. On the other
hand, in UPPAAL an edge cannot have both clock guard and synchronization over an
urgent channel, and all channels in the model are declared as urgent to comply with the
maximal progress behavior (Fig. 6).

The drill process. The drill process actually consists of two independent processes
working in parallel. The first process is responsible for switching the drill on/off and the
second one performs drilling. UPPAAL does not support nested processes that is why we
have changed the structure of the model. There is no variable that is shared by the nested

94 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

idle

locking

clClamp <= 2

is_locked

unlocking

clClamp <= 2

cClampOnOff?
clClamp:=0

clClamp==2
cClampOnOff?

clClamp:=0

clClamp==2

cUnlocked!

cLocked!

Fig. 6. Sequential composition in the clamp process.

processes in the χ drill process (the value of variable x has never been used) and the clamp
process does not perform any other action. For this reason we can safely divide this process
into two processes. The more complicated case of the nested processes and its translation
is explained in the description of the main_control process.

The tester process. In the χ tester process the atomic process skip is used. In this case
skip can be translated as a transition without any guards, synchronization or assignment
labels. In χ skip cannot delay. To make it non-delayable in UPPAAL the input location of
the edge should be marked as urgent.

The main_control process. The main_control starts up the parallel adding, drilling,
testing and removing operations and waits for their results. This is another case of the
nested parallel processes. We cannot translate this process in the same way as we have
translated the drill process because those four processes are not truly independent. First,
they share variables that store the information about the slot states. Second, main_control
starts them up and after their completion it performs other operations sequentially. To trans-
late this process we have to define four additional processes (MC_p0––adding, MC_p1––
drilling, MC_p2––testing, MC_p3––removing) that will work in parallel (Fig. 7). To start
them up from the main_control process we use the flags (bStartP0, bStartP1, bStartP2,
bStartP3) that are declared globally as well as the array where the current slot states are
stored.

Main_control checks if the adding, drilling, testing and removing operations can be per-
formed and if they can, it sets the corresponding flags to true. The flags are used as guards
in the additional processes and as soon as they become true, the corresponding synchro-
nization via the channels cEnvCanAdd, cStartTest, cStartDrill, cEnvCanRemove is per-
formed. When the additional processes get the signals that the corresponding operations are
completed (via the channels cEnvAddFinished, cDrillEnded, cTested, cEnvRemFinished),
they update the slot states if necessary (Fig. 7).

After finishing the additional processes set the flags to false and main_control can con-
tinue the execution of the sequential part. Note, that after starting up the nested processes

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 95

idle

adding

idle

testing

idle

drilling

idle

removing

bStartP0

cEnvCanAdd!

bStartP0 := false

cEnvAddFinished?

bStartP1

cStartDrill!

bStartP1 := false,
p[1] := c2

cDrillEnded?

bStartP2

cStartTest!

bStartP2 := false,
p[2] := b_TstRes ? c4 : c3

cTested?

bStartP3

cEnvCanRemove!

bStartP3 := false

cEnvRemFinished?

Fig. 7. The example of the additional processes of main_control.

the main process delays in the location till their completion. For this reason this location
cannot be marked as urgent. To implement maximal progress we add synchronization over
the urgent channel cDummy to the outgoing edge and a “dummy” process that can perform
only synchronization on the channel cDummy. Note, that in general case the nested pro-
cesses can be synchronized with the main process by means of additional channels instead
of flags.

According to the χ semantics of the guard operator, the guarded process can perform
an action if the guard is true and the process can perform the action. In order to translate
p0 = 0 → cGetS1!true we need to assign the guard and the synchronization to the same
edge (see Fig. 8).

After finishing the adding and removing operation main_control requests the current
slot (sensors) states from the turntable controller (TTC). TTC passes the request to the
turn_table process and gets the current states (cS1!, b_S1 := bS1, cS3!, b_S3 := bS3). After
that, it passes those slot states to main_control (cSetS1!, cSetS3!). Note, that we did not
define additional shared variables to pass the current slot states from TTC to main_control.
Instead, main_control reads the shared variables that have been updated by the turn_table
process. We can do this safely because it is only the main_control process that can request
to update the variables b_S1 and b_S3, and it can read them only after they have been
updated by the turn_table process. That means that the situation, when one process wants to
read from and another process wants to write into the same shared variable, is not possible.
Re-using the same variable for several sequential communications allows us to reduce the
state space by decreasing the number of the shared variables and assignments. As it has
been explained before, the committed and urgent locations are used in order not to allow
the process to perform a delay.

96 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

The drill_control, tester_control, TTC and the environment processes. The rest of
the processes have been translated according to the described rules, so they do not require
any additional explanation.

after_turn

before_turn

bStartP0:=(p[0]==0),
bStartP1:=(p[1]==1 or p[1]==3),
bStartP2:=(p[2]==2),
bStartP3:=(p[3]==4)

not (bStartP0 or bStartP1 or bStartP2 or bStartP3)
cDummy?

cGetS1!

cSetS1?

p[0]:=1
b_S1

!b_S1

p[0]!=0

cGetS3!
bRemCalled:=false

cSetS3?

!b_S3
p[3]:=0

b_S3

p[3]!=4

s:=p[3], p[3]:=p[2], p[2]:=p[1], p[1]:=p[0], p[0]:=s
cDummy?

p[3]==0 && p[0]==0

n_Turn:=0

p[3]!=0 && p[0]==0
n_Turn:=1

p[3]==0 && p[0]!=0
n_Turn:=2

p[3]!=0 && p[0]!=0
n_Turn:=3

cTurn!
cTurned?

p[0]==0

p[3]==4 and bRemCalled

Fig. 8. The main_control process.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 97

6.3. Verification of the model in UPPAAL

The UPPAAL model checking engine allows to automatically establish or refute prop-
erties that are expressed in the UPPAAL Requirement Specification Language. This lan-
guage is a subset of timed computation tree logic (TCTL), where primitive expressions
are location names, variables, and clocks from the modeled system [36]. UPPAAL per-
forms verification on-the-fly and it is not possible to learn how many states were generated.
The UPPAAL developers created a tool named memtime to know how much time and how
much memory the UPPAAL model checker verifyta needs. Time and memory consumption
depends on the options of the model checker (search order, state space reduction technique,
state space representation, state space re-use). Verification of all properties of the turntable
system requires 7.988 MB and 56.34 s, if aggressive state space reduction and breadth-
first search order options are used without re-using of the state space. Verification with
conservative state space reduction requires 20.527 MB and 55.29 s. Verification without
any state space reduction requires 21.004 MB, 54.42 s.

The state based properties like “If drilling, testing, adding or removing operation are
started the turntable does not rotate in the meanwhile” or “No drilling, testing or removing
operation take place if there is no product in the slot and no adding operation can be
performed if there is a product in the corresponding slot” can be easily expressed as simple
TCTL formulas.

The model checking of other than invariant or reachability properties (for instance,
bounded liveness) might be carried out in UPPAAL by means of the test automata [1] or
the “decoration” method [32]. The latter can also be used to prove unbounded liveness
properties.

(1) The system does not contain a deadlock. The absence of a deadlock can be easily
proved in UPPAAL using the TCTL formula
A[] not deadlock

(2) If drilling (testing, adding or removing) is started then it is also finished and the
turntable does not rotate in the meantime. Auxiliary processes MC_ p0, MC_ p1,
MC_ p2, MC_ p3, that we used to translate nested parallelism in the main_control
process, can be in the idle or in progress (adding, drilling, testing or removing) loca-
tions. When the process is in its progress location that means that corresponding
action has been started but is not finished yet. If the process is in its idle location that
means that it has not been started or it has been already finished. This property we
verify with the formula:

A[] (MC_p0.adding or MC_p1.drilling
or MC_p2.testing or MC_p3.removing)

imply not turn_table.turning

(3) If the product has a bad test result it remains on the table and is drilled again.
We can rephrase this property in the following way: A product with a bad test result
will be drilled again if not any product with a bad test result can be removed or reach
the testing position without being drilled (considering that there is no product loss).
First, knowing that product with a bad test result is indicated by the constant 3, we
verify that it will not be removed:
A[] p[3] == 3 imply not MC_p3.removing

98 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

Then, we verify that the product with a bad test result will never reach the testing
position without being drilled again:
A[] MC_p2.testing imply p[2]!= 3

(4) If the product has a good test result then the remover will be called to remove
the product. In order to verify this property we introduce a new boolean variable
bRemCalled. This variable is set to false before removing started and its value is
changed to true when the remover is called. Then, the value of the guard on the
edge before the turn has been changed in a way that if the product in the removing
position has a good test result and remover has not been called, the system will be
deadlocked. After that, we verify the first property again.

(5) No drilling (testing or removing) takes place if there is no product in the slot
and no adding can be performed if there is a product in the slot. Knowing that
the constant 0 indicates that there is no product in the slot we verify this property
using simple formulas:
A[] p[1] == 0 imply not MC_p1.drilling
A[] p[0]!= 0 imply not MC_p0.adding

(6) Every added product is drilled in the next rotation. This property can be proved in
the way similar to the third property. Knowing that every added product is indicated
by the constant 1 and considering that there is no product loss we express and verify
this property using the formula
A[] MC_p2.testing imply p[2]!= 1

(7) Every product eventually leaves the table Properties with fairness cannot be veri-
fied in UPPAAL.

(8) When a product is added it takes between 21 and 30 time units to get its test
result. This is so-called “bounded liveness” property and it can be verified in UP-
PAAL by the means of test automata or decoration method [1,32]. We have decided
to use the decoration method because it requires less changes of the model.

We need to identify the products in order to verify that the product that has been
added is tested. We know that there are four slots on the turntable and each of them
can contain no more than one product. We also know that the products stay in the
same slot till they are removed. That means that we can use 4 integers to identify
slots and if there is a product in the slot it can be identified by the identifier of this
slot.

To identify slots we use four integers 0 through 3 that are stored in the array
int[0, 3] id[4] := 0, 1, 2, 3. The values stored in the array are the identifiers and the
indexes of the array are the positions of the turntable, i.e. id[2] == 3 means that
the slot (product) with id == 3 is in the testing position. Every time the turntable
rotates, the slots move as well and the values stored in the array are updated. It is
sufficient to verify the property for a product with one particular identifier.

The property “When a product is added it takes between 21 and 30 time units to
get its test result” actually consist of two properties: “When a product is added it
takes 30 or less time units to get its test result” and “When a product is added it takes
21 or more time units to get its test result”.

To verify the first property additional global clock clDec and boolean variable
bDec1 with initial value false have been declared. Then, we duplicate the edge
with communication over the channel cEnvAdded in the turn_table process. We add
the guard id[0] == 0 and the assignment bDec1 := true, clDec := 0 to one of the
duplicated edges and the guard id[0] !=0 to the other one (the part of the modified

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 99

turn_table process is shown in Fig. 9). That means that when the product is added to
the slot with id == 0, the flag bDec1 is set to true and the clock clDec is set to 0.

Then, we duplicate the edge with the communication over the channel cTesterUp-
Done in the tester controller, and add the guard id[2] == 0 and the assignment part
bDec1 := false to one of them. We also add the guard id[2] != 0 to the other one (the
part of the modified TC process is shown in Fig. 10). That means that the flag bDec1
is set to false when the test of the product in the slot with the id == 0 is completed.

Now we can verify that if the flag bDec1 is true the clock clDec does not exceed
30 time units.
A[] bDec1 imply clDec <= 30

The property “When a product is added it takes 21 or more time units to get its
test result” is verified using the same approach.

7. Comparisons and conclusions

In this section we present three tables to give an impression on the level of difficulty
concerning different aspects on translating the χ model and verifying its properties. In

idle

turning

clTurning <= 4

cRotate?
clTurning:=0, bS2:=true

clTurning == 4

bS2:=false

cS1!
b_S1:=bS1

cEnvAdded?

bS1:=true,
clDec:=0,
bDec1:=true

cid == id[0]

cid != id[0]

cEnvAdded?

bS1 := true

Fig. 9. The part of the modified turn_table process.

tested

cTesterUpDown!

cTesterUpDone?
bDec1 := false

cid == id[2]cid != id[2]
cTesterUpDone?

cTested!

Fig. 10. The part of the modified TC process.

100 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

the first table the number of states and transitions is shown. Note that UPPAAL does not
generate the entire state space. The UPPAAL verifier required at most 7.988 MB during
verification of all properties. Comparing the sizes of the state spaces generated by SPIN

and µCRL we can conclude that the translation to µCRL provides us with a state space
which is smaller than the one provided by SPIN, though the state space generated by µCRL
requires more memory to be stored.

The second and third table use a grading system which should be read as follows:
• 0: Impossible. Due to differences between the two modeling languages or the limitations

of the temporal logic it is impossible to do this.
• 1: Difficult. For Table 2, translation is not straightforward but can be done using special

techniques; for Table 3, verification cannot be done straightaway, involves changing the
model a lot.

• 2: Needs some work. For Table 2, translation is not completely straightforward, but it
does not require special techniques; for Table 3, only slight changes in the model are
needed to verify this property.

• 3: Easy. Translation or verification can be done easily.
The second table tells us how difficult it is to translate certain χ constructions in our case

study (possibilities not mentioned here do not pose problems for any of the translations).
Both translating to PROMELA and µCRL can be difficult under some circumstances, but
translating to UPPAAL on the other hand never gets really difficult in our case. These
results tell us that, at least concerning the turntable model, UPPAAL is the best choice
when selecting a language based on the difficulty to translate to this language.

The third table finally shows how difficult it is to express and verify the properties of the
turntable using the tools. In this table for each property (using the numbering as in previous
parts of this article) the type (safety, liveness, liveness + safety, liveness + fairness, liveness
+ time) is given. What stands out is that property 7 is difficult or even impossible to verify
in either tool. Property 8 is very hard to verify in SPIN due to the fact that time is hard to be

Table 1
State space comparison

Tool State space

states # transitions MB used

Spin 100,995 188,724 5.897
CADP (µCRL) 25,926 50,835 (τ : 12,957) 7.332
Uppaal – – 7.988

Table 2
Comparison of translation problems

Language Problems

Assignments Delays Guards Nested parallelism Shared variables

Promela 3 2 1 1 3
µCRL 2 1 3 2 1
Uppaal 3 3 3 2 3

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 101

Table 3
Comparison of the verification

Tool Property

1(l) 2(l + s) 3(l) 4(l) 5(s) 6(l) 7(l + f) 8(l + t)

Spin 3 2 2 2 3 2 1 1
CADP(µCRL) 3 3 3 3 2 3 1 2
Uppaal 3 3 3 2 3 3 0 2

referred to when expressing properties. In UPPAAL and CADP verifying this property still
needs some work. This is not due to problems with time, but because in order to prove the
property at least some products need to be uniquely identifiable. Overall we conclude that
CADP provides the least number of problems concerning the verification of the properties.

All three formalisms are suitable for the analysis of systems that are originally modeled
in χ . When translating we discovered that certain statements have straightforward transla-
tions in one language while they have not in another. For example, assignments exist in the
same way in χ , PROMELA and UPPAAL, while in µCRL they are represented differently.
Additionally, some constructs like, for example, the parallel operator with shared variables
inside the process definition, we find very hard to achieve in each language, for different
reasons.

To reason about the values of variables (state values) in CADP (using regular, alterna-
tion-free µ-calculus) one must extend the model with additional actions that make these
values visible. This con of CADP makes the linear temporal logic, built in SPIN, and the
timed computation tree logic, built in UPPAAL, more appropriate when reasoning about
states than the regular, alternation-free µ-calculus used in CADP, even though the latter
is more powerful. Action-based properties could be verified in SPIN as well, by the trace-
assertion mechanism. In UPPAAL proving such properties can be done using test automata
or a decoration technique. When it comes to the fairness principle, µ-calculus and SPIN

can express it in a very effective way while in UPPAAL the use of the fairness principle is
impossible.

Finally, the graphical user interface makes modeling and verifying in UPPAAL more
comfortable than in µCRL. We also find XSPIN, a graphical user interface for SPIN, very
useful.

Related work
• In the article [12] one of the first attempts to verify a χ model by manual translation

to DTPROMELA and applying the model checker DTSPIN is described. It dealt with
a model of an industrial system and had three objectives. The first objective was to
investigate the ability to verify translated χ models with the model checker DTSPIN.
The second objective was to find out whether there are opportunities to automatically
translate χ models into DTPROMELA. Finally, the third objective was to verify formally
some properties of a manufacturing system model.

• In an article by Usenko [40] SPIN and µCRL are compared using the HAVi leader
election protocol. Concerning the generation of a state space for a specification of this
protocol, it was concluded that SPIN generates states faster, but the resulting state space
has more states. On the other hand, according to the article, the state space generation
capabilities of SPIN and the µCRL toolset cannot be compared due to the differences
in the underlying languages. Furthermore, the results may be misleading, so the author

102 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

tells us, due to the fact that the PROMELA code was derived from the µCRL code instead
of from the informal description. The article ends by saying that a better comparison
may be achieved using much smaller case studies.

• The article by Jensen et al. [28] is on comparing SPIN and UPPAAL using a collision
avoidance protocol as a case study. In the paper it is indicated that it is possible to
model real-time systems and their broadcast behavior in UPPAAL and it cannot be done
in SPIN. The kind of properties expressible in the UPPAAL requirement specification
language are restricted to invariance and possibility properties. It is possible to verify
bounded liveness properties in UPPAAL, though they need to be expressed as separate
test automata.

• Garavel and Hermanns [20] present a practical methodology for studying the perfor-
mance of a concurrent system, starting from an already verified functional specifica-
tion of this system. They do not design a new formalism, but instead reuse a non-sto-
chastic process algebra called LOTOS, which they adapt to the stochastic framework.
The CADP toolset is used for the minimisation of state spaces, resulting in Markov
chains. These Markov chains can then be used as input for the TIPPTool, in order to
find answers for performance questions.

• In an article by Wijs and Fokkink [42] the experience gained by translating the χ turn-
table model into a µCRL model has been used to design a general translation scheme
from χt (discrete-event χ) to µCRL.

• The article by Trčka [39] discusses the general translation from χ to PROMELA in more
detail.

Future work
• The plan is to formulate a general translation scheme from χ to UPPAAL. Then using

this scheme and the schemes from [42] and [39] automatic translators will be built.
• We will investigate how current stochastic tools can be used to determine performance

characteristics of χ models and compare the results with those coming from the χ

simulator.
• We will investigate other verification mechanisms, such as theorem provers, and deter-

mine how suitable they are for checking properties of χ models.

References

[1] L. Aceto, P. Bouyer, A. Burgueño, K.G. Larsen, The power of reachability testing for timed automata, Theor.
Comput. Sci. 300 (1–3) (2003) 411–475.

[2] R. Alur, C. Courcoubetis, D. Dill, Model checking in dense real-time, in: Proceedings of the 5th IEEE
Symposium on Logic in Computer Science, LICS, 1990.

[3] A.T. Hofkamp, H.W.A.M. van Rooy, Embedded Systems Laboratory Exercises Manual, 2003.
[4] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer Science, vol.

18, Cambridge University Press, 1990.
[5] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, R.R.H. Schiffelers, Syntax and Consistent Equation

Semantics of Hybrid Chi, CS-Report 04-37, Eindhoven University of Technology, 2004.
[6] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, R.R.H. Schiffelers, Syntax and Semantics of Timed

Chi, CS-Report 05-09, Eindhoven University of Technology, 2005.
[7] D.A. van Beek, A. van der Ham, J.E. Rooda, Modelling and control of process industry batch production

systems, in: 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona,
Spain, CD-ROM, 2002.

[8] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Inform. Control 60 (1–3) (1984)
109–137.

E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104 103

[9] M. Bezem, J.F. Groote, Invariants in process algebra with data, in: CONCUR’94: Concurrency Theory,
Lecture Notes in Computer Science, vol. 836, 1994, pp. 401–416.

[10] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, J.C. van de Pol, µCRL: a toolset for
analysing algebraic specifications, in: Proceedings of the 13th Conference on Computer Aided Verification
(CAV2001), Lecture Notes in Computer Science, vol. 2102, 2001, pp. 250–254.

[11] S.C.C. Blom, N. Ioustinova, N. Sidorova, Timed verification with µCRL, in: Andrei Ershov Fifth Interna-
tional Conference Perspectives of System Informatics, Lecture Notes in Computer Science, vol. 2890, 2003,
pp. 178–192.

[12] V. Bos, J.J.T. Kleijn, Automatic verification of a manufacturing system, Robot. Comput. Integrat. Manu-
factur. 17 (2001) 185–198.

[13] V. Bos, J.J.T. Klein, Formal specification and analysis of industrial systems, Ph.D. thesis, Eindhoven Uni-
versity of Technology, 2002.

[14] D. Bošnački, Enhancing state space reduction techniques for model checking, Ph.D. thesis, Eindhoven Uni-
versity of Technology, 2001.

[15] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[16] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, M. Sighireanu, CADP—a protocol val-

idation and verification toolbox, in: Proceedings of the 8th Conference on Computer Aided Verification
(CAV’96), Lecture Notes in Computer Science, vol. 1102, 1996, pp. 437–440.

[17] W.J. Fokkink, Introduction to process algebra, Texts in Theoretical Computer Science, An EATCS Series,
Springer-Verlag, 2000.

[18] W.J. Fokkink, J.F. Groote, J. Pang, B. Badban, J.C. van de Pol, Verifying a sliding window protocol
in µCRL, in: Proceedings of the 10th Conference on Algebraic Methodology and Software Technology
(AMAST’04), Lecture Notes in Computer Science, vol. 3116, 2004, pp. 148–163.

[19] W.J. Fokkink, J.F. Groote, M. Reniers, Modelling distributed systems, Unpublished manuscript, 2002.
[20] H. Garavel, H. Hermanns, On combining functional verification and performance evaluation using CADP,

in: Proceedings of the 11th International Symposium of Formal Methods Europe (FME’2002), Lecture
Notes in Computer Science, vol. 2391, 2002, pp. 410–429.

[21] R. Gerth, Concise Promela Reference. Available from: <http://spinroot.com/spin/Man/Quick.html>.
[22] P. Godefroid, P. Wolper, Using partial orders for the efficient verification of deadlock freedom and safety

properties, in: Proceedings of the 3rd Workshop on Computer-Aided Verification (CAV’91), Lecture Notes
in Computer Science, vol. 575, 1991, pp. 410–429.

[23] J.F. Groote, The Syntax and Semantics of Timed µCRL, Technical Report SEN-R9709, CWI, Amsterdam,
1997.

[24] J.F. Groote, F. Monin, J.C. van de Pol, Checking verifications of protocols and distributed systems by com-
puter, in: Proceedings of the 9th Conference on Concurrency Theory (CONCUR’98), Lecture Notes in
Computer Science, vol. 1466, 1998, pp. 629–655.

[25] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, Englewood Cliffs, NJ, 1985.
[26] G.J. Holzmann, The model checker spin, IEEE Trans. Software Eng. 23 (5) (1997) 279–295.
[27] G.J. Holzmann, The SPIN Model Checker, Addison-Wesley, 2003.
[28] H.E. Jensen, K.G. Larsen, A. Skou, Modelling and analysis of a collision avoidance protocol using SPIN

and Uppaal, in: Proceedings of the 2nd SPIN Workshop, Rutgers University, New Jersey, USA, 1996.
[29] B.W. Kernighan, D.M. Ritchie, The C Programming Language, second ed., Prentice-Hall, 1988.
[30] K.G. Larsen, P. Pettersson, W. Yi, Uppaal in a nutshell, Int. J. Software Tools Technol. Transfer 1 (1–2)

(1997) 134–152.
[31] F. Larsson, K.G. Larsen, P. Pettersson, W. Yi, Efficient verification of real-time systems: compact data

structures and state-space reduction, in: Proceedings of the 18th IEEE Real-Time Systems Symposium,
IEEE Computer Society Press, 1997, pp. 14–24.

[32] M. Lindahl, P. Pettersson, W. Yi, Formal design and analysis of a gear controller, IEEE Trans. Software
Eng. 3 (2001) 353–368.

[33] J. Loeckx, H.-D. Ehrich, M. Wolf, Specification of Abstract Data Types, Wiley-Teubner, Chichester, Stutt-
gart, 1996.

[34] B. Luttik, Choice quantification in process algebra, Ph.D. thesis, University of Amsterdam, 2002.
[35] R. Mateescu, M. Sighireanu, Efficient on-the-fly model-checking for regular alternation-free mu-calculus,

Sci. Comput. Program. 46 (3) (2003) 255–281.
[36] M.O. Möller, Structure and hierarchy in real-time systems, Ph.D. thesis, University of Aarhus, 2002.
[37] R. De Nicola, F. Vaandrager, Three logics for branching bisimulation, J. ACM 42 (2) (1995) 458–487.

104 E. Bortnik et al. / Journal of Logic and Algebraic Programming 65 (2005) 51–104

[38] S. Owre, J.M. Rushby, N. Shankar, PVS: a Prototype Verification System, in: Proceedings of the 11th
Conference on Automated Deduction (CADE’92), Lecture Notes in Computer Science, vol. 607, 1992, pp.
748–752.

[39] N. Trčka, Verifying χ Models of Industrial Systems with Spin, CS-Report 05-12, Eindhoven University of
Technology, 2005.

[40] Y.S. Usenko, State space generation for the HAVi leader election protocol, Sci. Comput. Program 43 (1)
(2002) 1–33.

[41] TIPSy Project Website. Available from: <http://www.cwi.nl/∼wijs/TIPSy>.
[42] A.J. Wijs, W.J. Fokkink, From χt to µCRL: combining performance and functional analysis, Proceedings of

the 10th Conference on Engineering of Complex Computer Systems (ICECCS’05), IEEE Computer Society
Press, 2005, pp. 184–193.

	Analyzing a model of a turntable system using Spin, CADP and Uppaal
	Introduction
	Turntable description
	Design rules and assumptions
	Verification properties

	The turntable model in
	The language
	The turntable model

	Promela/Spin
	Introduction to Promela/Spin
	The turntable model in Promela
	Verification of the model in Spin

	CRL/CADP
	The language CRL
	The turntable model in CRL
	Verification of the model in CADP

	Uppaal
	Introduction to Uppaal
	The turntable model in Uppaal
	Verification of the model in Uppaal

	Comparisons and conclusions
	References

