Process algebra

J.C.M. Baeteh D.A. van Beek, J.E. Rood&
!Department of Mathematics and Computer Science
2Department of Mechanical Engineering
Eindhoven University of Technology, P.O.Box 513
5600 MB Eindhoven, The Netherlands

{j.c.m.baeten,d.a.v.beek,j.e.rooda}@tue.nl

Abstract

Process algebra is the study of distributed or paralleksystby algebraic means. Originating
in computer science, process algebra has been extendedent ngears to encompass not just
discrete-event systems, but also continuously evolvirgnpmena, resulting in so-called hybrid
process algebras. A hybrid process algebra can be usedefgpttification, simulation, control
and verification of embedded systems in combination witir #revironment, and for any dynamic
system in general. As the vehicle of our exposition, we uadnttborid process algebpa(Chi). The
syntax and semantics gf are discussed, and it is explained how equational reasaimimgjifies
tool implementations for simulation and verification. A tefilling line example is introduced to
illustrate system analysis by means of equational reagonin

1 Introduction

1.1 Definition

Process algebra is the study of distributed or paralleksystby algebraic means. The word ‘pro-
cess’ here refers tbehaviorof a system A system is anything showing behavior, such as the
execution of a software system, the actions of a machine em the actions of a human being.
Behavior is the total of events, actions or evolutions thegsiem can perform, the order in which
these can be executed and maybe other aspects of this exesutih as timing, probabilities, or
continuous aspects. Always, the focus is on certain aspédiehavior, disregarding other as-
pects, so an abstraction or idealization of the ‘real’ bérag considered. Instead of considering
behavior, we may consider abservationof behavior, where an action is the chosen unit of ob-
servation. As the origin of process algebra is in computiemse, the actions are usually thought
to be discrete: occurrence is at some moment in time, anerdiff actions are separated in time.
This is why a process is sometimes also callelisarete-event systenflease note that this is a
less restrictive definition than e.g. (Cassandras and tafer1999).

The word ‘algebra’ denotes that the approach in dealing Wthavior is algebraic and ax-
iomatic. That is, methods and techniques of universal aigabe used. A process algebra can
be defined as any mathematical structure satisfying tharexigiven for the basic operators. A
process is an element of a process algebra. By using the sxiwencan perforntalculations
with processes. Often, though, process algebra goes béyestrict bounds of universal algebra:
sometimes multiple sorts and/or binding of variables aszlus

The simplest model of behavior is to see behavior as an iyt function. A value or input
is given at the beginning of the process, and at some momeng iha value as outcome or output.

This model was used to advantage as the simplest model oktievior of a computer program
in computer science, from the start of the subject in the raidd the twentieth century. It was
instrumental in the development of (finite state)tomata theory In automata theory, a process
is modeled as an automaton. An automaton has a numistatefsand a number ofransitions
going from a state to a state. A transition denotes the eierof an (elementary) action, the
basic unit of behavior. Also, there is an initial state (stimes, more than one) and a number of
final states. A behavior is a run, i.e. a path from initial sttt final state. An important aspect
is when to consider two automata equal, expressed by a nofiequivalence. On automata,
the basic notion of equivalence is ‘language equivalensbich considers equivalence in terms
of behavior, where a behavior is characterized by the sexexfugions from the initial state to a
final state. An algebra that allows equational reasoningibhotomata is the algebra of regular
expressions, see e.g. (Linz 2001).

Later on, this model was found to be lacking in several dibnat Basically, what is missing
is the notion ofinteraction during the execution from initial state to final state, ategs may
interact with another system. This is needed in order tordmsparallel or distributed systems, or
so-calledreactivesystems. When dealing with interacting systems, the plu@aseurrency theory
is used. Thus, concurrency theory is the theory of intangctarallel and/or distributed systems.
When referring to process algebra, we usually consideréhagpproach to concurrency theory, so
that a process algebra usually (but not necessarily) hapemator (function symbol) to put things
in parallel, called parallel composition.

Thus, a usable definition is that process algebra is the stiithe behavior of parallel or dis-
tributed systems by algebraic means. It offers means tailesar specifysuch systems, and thus
it has means to specify parallel composition. Besides thign usually also specify alternative
composition (put things in a choice) and sequential contipos{sequencing, put things one after
the other). Moreover, it is possible to reason about suctesys using algebra, i.e. equational
reasoning. By means of this equational reasonimgification becomes possible, i.e. it can be
established that a system satisfies a certain property.

What are these basic laws of process algebra? In this chaygelo not present collections of
such laws explicitly. Rather, it is shown how calculatioas proceed.

To repeat, it can be said that any mathematical structute agiérators of the right number of
arguments satisfying the given basic laws is a process i@gé€iften, these structures are formu-
lated in terms otransition systemswhere a transition system has a humber of states (including
an initial state and a number of final states) and transitimigeen them. The notion of equiva-
lence studied is usually not language equivalence. Prarhamaong the equivalences studied is
the notion ofbisimulation Often, the study of transition systems, ways to define thedneguiv-
alences on them are also considered part of process alg®erain the case no equational theory
is present.

1.2 Calculation

One form of calculation is verification by means of automategthods (calleanodel checking
see e.g. (Clarke, Grumberg, and Peled 2000)) that travéirseates of a transition system and
check that a certain property is true in each state. The drekvis that transition systems grow at
a rate exponential in the number of components (in fact, duke presence of parameters, often
they become infinite). For instance, a system having 10dnti&Erg components, each of which has
10 states, has a total number of 10 000 000 000 states. Itishsgti model checking techniques
suffer from thestate explosiomproblem.

At the other end, reasoning can take place in logic, usingm fof deduction. Also here,

progress is made, and matiheorem provingools exist (Bundy 1999). The drawback here is that
finding a proof needs user assistance (as the general prablemdecidable), which requires a lot
of knowledge about the system.

Equational reasoning on the basis of an algebraic theogstdle middle ground. On the one
hand, the next step in the procedure is usually clear, sinisenmhore rewriting than equational
reasoning. Therefore, automation can be done in a straigkdafd way. On the other hand, rep-
resentations are compact and allow the presence of pamanstethat an infinite set of instances
can be verified at the same time.

1.3 History

Process algebra started in the late seventies of the tweetatury. At that point, the only part
of concurrency theory that existed was the theory of Pets,res discussed in another chapter in
this volume.

The question was raised how to give semantics to prograntaioorg a parallel composition
operator. It was found that this was difficult using the seticamethods used at that time. The
idea of a behavior as an input/output function needed to badidned. A program could still
be modeled as an automaton, but the notion of language égpubeawas no longer appropriate.
This is because the interaction a process has between indutwput influences the outcome,
disrupting functional behavior. Secondly, the notiorgédbal variables needed to be overcome.
Using global variables, a state of an automaton used as alwadegiven as a valuation of the
program variables, that is, a state was determined by thesaf the variables. The independent
execution of parallel processes makes it difficult or imfmesto determine the values of global
variables at a given moment. It turned out to be simpler t@#th process have its own local
variables, and to denote exchange of information explicitl

After some preliminary work by others, three main procegglala theories were developed.
These are CCS (Calculus of Communicating Systems) by RoliimeM(Milner 1980; Milner
1989), CSP (Communicating Sequential Processes) by ToayeHbloare 1985), and ACP (Al-
gebra of Communicating Processes) by Jan Bergstra and Jem\ilop, see (Bergstra and Klop
1984; Baeten and Weijland 1990).

Comparing these best-known process algebras CCS, CSP ddwvelan say there is a con-
siderable amount of work and applications realized in a#ehof them. In that sense, there seem
to be no fundamental differences between the theories wipect to the range of applications.
Historically, CCS was the first with a complete theory. Difiet from the other two, CSP makes
fewer distinctions between processes. More than the otter ACP emphasizes the algebraic
aspect: there is an equational theory with a range of semanitdels. Also, ACP has a more
general communication scheme: in CCS, communication isbawed with abstraction, in CSP,
there is also a restricted communication scheme.

Over the years, other process algebras were developed, amg ertensions were realized.
Most interesting for this volume is the extension to hybrydtems. The language we consider
in this chapter is most closely related to the ACP approagln this approach, there is the most
work and experience on hybrid extensions. For a taste ohanapproach, see (He 1994).

1.4 Hybrid process algebra

Process algebra started out in computer science, and isiggpgeared to describing discrete-
event systems such as computer programs and software syswWith the growing importance
of embedded systems, which are software systems that agrated in the machine or device

that they control, it was considered to use process algdboata model and reason about the
controlled physical environment of the software. Howewecifications of physical systems
not only require discrete-event models (such as timed ameat transition systems), but also
continuous-time models (such as differential algebraigatigns (Kunkel and Mehrmann 2006)),
leading to hybrid models.

Inrecent years, several attempts were made to incorpareleaspects into process algebra. In
this chapter, we report on one of these, based o th@guage. Other hybrid process algebras are
HyPA (Cuijpers and Reniers 2005), process algebra for Hydystems ACE* (Bergstra and Mid-
delburg 2005), and thg¢-Calculus (Rounds and Song 2003). The history ofitHermalism dates
back quite some time. It was originally mainly used as a nmindehnd simulation language for
discrete-event systems. The first simulator (Naumoski dhdrfs 1998) was successfully applied
to a large number of industrial cases, such as integratedicimanufacturing plants, breweries,
and process industry plants (Beek, van den Ham, and Rood3.20@ter, the hybrid language
and simulator were developed (Fabian 1999; Beek and R20d@). Recently, the language
has been completely redesigned. The result is a hybrid psagebra with a formal semantics as
defined in (Beek, Man, Reniers, Rooda, and Schiffelers 2000&¥ chapter informally defines the
most important elements of the syntax and semantics of thcess algebra. It also extends the
formal definitions of (Beek, Man, Reniers, Rooda, and Seldfs 2006) with a more user friendly
syntax, including the specification of data types.

2 Syntax and informal semantics of they process algebra

In this section the syntax and informal semantics of thprocess algebra is first illustrated by
means of two examples: a controlled tank and an assemblyekample. After this intuitive
explanation, the syntax and semantics are more preciséhede

2.1 Controlled tank

Figure 1 shows a liquid storage tank with a volume controll€. The incoming flowQ; is
controlled by means of a valwve The outgoing flow is given by equatiad@, = ~/V. The volume
controller maintains the volum¥é of the liquid in the tank between 2 and 10. Thenodel of the
controlled tank is as follows:

model Tank) =

[var n: nat =0, cont V : real = 10, alg Qj, Qg : real
V=0 - Qo

| Q =n-5

|| Qo:\/v
[*«(V<2—-n:=1,V>10->n:=0)

1

Figure 2 shows the result of a simulation of the model for &tumits. Initially, the volume in the
tank equals 10, and the valve is closad<{ 0). The derivative of the volume equals the difference
between the incoming and outgoing flows & Q; — Q,). The specification of the controller is
gvenbyx(V <2—-n:=1;, V>10— n:=0), where the loop statementp) denotes the
infinite repetition of statemem. The guard operator- ' is used to specify conditional execution
of a statement, by prefixing a condition (referred to as adjuaro a statemenp, which is written
asb — p. The sequential composition operatoris used to specify sequential execution of

12 ‘
10
8
n
Qi 6
| 4 1
' v 2 f
0l ! |
| \ | \ \ \
Qo 0 1 2 3 4 5 6
& time
Figure 1: Controlled tank. Figure 2: Simulation of the controlled tank.

components, and the parallel composition operdtois‘used to specify the parallel execution of
components. In the example, the equations and the comtawtieall executed in parallel.

Initially, the three equations are enabled and the glvard 2 is enabled. Since the value of
the guard is false initially\{ equals 10), the assignmemt= 1 is disabled. The model executes
by doing a sequence of delays, which involve passing of tane, actions, which are executed
instantaneously, without passing of time. The model can delay oft time units when all
enabled statements can simultaneously do a deldy & guard that is false, allows arbitrary
delays until it becomes true (see Section 2.6.2), and emsaéllow a delay of, when a solution
of the equations exists that defines the values of the vasadd a function of time (on domain
[0, t]). At the end point of the delay(sY, equals 2, and the guard becomes true. The assignment
n := 1 is now enabled. The model can now no longer delay, sincgragsints cannot delay; an
assignment is a so called ‘non-delayable’ statement (setio8&.3). The model can do an action
when any of the enabled statements can do an action. Assigamen do an action by executing
the assignment. Therefore, the model executes the assigmne 1, which models opening of
the valve. The assignment causes the value of vari@bte immediately become 5, to satisfy the
equationQ; = n - 5. This is referred to as the ‘consistent equation semantcgiations must
be satisfied at all times. The value of the continuous vaei&hl however, is unchanged; only
algebraic variables are allowed to change, to satisfy apgtwhen other variables are assigned.
Execution of the assignment:= 1 causes the assignment to be disabled, and the next statemen
(V = 10 - n:= 0) to be enabled. The guaM > 10 is false. Therefore, the model delays,
while solving the equations, until the guard becomes traduae in the tank equals 10). Now
the assignmemn := 0 is executed, modeling closing of the valve. As a result,a$sgnment is
disabled, and the first statemelt £ 2 — n := 1) of the repetition is re-enabled.

The general form of & model is:
model id(Dy) = [D p1l,

whereid is an identifier that represents the name of the mddgldenotes the model parameters,
that are not present in the example; dddlenotes the declaration of variables and/or channels
of the model. Channels are introduced in the assembly liaenple of Section 2.2. Finallyp
denotes a statement, also known as a process term. Nofaldan p] is in fact a scope operator,
which is defined in Section 2.3, together with statemgnthe following kinds of variable can be
declared inD:

e ‘Discrete’ variables, such as iar n : nat = 0. This declares a variablewith initial value
0. The name discrete is common in hybrid systems terminpkgy refers to the fact that the
variable takes only a limited number of values when the m@aekecuted (in this case only
0 and 1). The value of a discrete variable remains constaahwiodel time progresses. The
value, in principle, changes only by means of assignmergsr(e= 1). Discrete variables can
be of type real, however.

e ‘Continuous’ variables, such asdont V : real = 10. Continuous variables are the only vari-
ables for which dotted variables (derivatives) can be usedddels. Therefore, the declaration
cont V : real implies thatV and its dotted versiol, can both be used in the model. The values
of continuous variables may change according to a contm@iaoction of time when model
time progresses. The values of continuous variables atigefurestricted by equations (or in
more general terms: delay predicates, defined in Sectiaf)2.%he value of a continuous
variable can also be changed by means of an assignment.

e ‘Algebraic’ variables, such as islg Qi, Q, : real. These variables behave in a similar way
as continuous variables. The differences are that algebeaiables may change according
to a discontinuous function of time, algebraic variables ot allowed to occur as dotted
variables, and algebraic variables do not have a memorwatue of an algebraic variable is
in principle determined by the enabled equations, and nasBignments (e.§, = V).

Finally, a predefined reserved global variatitae, which denotes the model time, exists. The
value of this variable is initially zero, and it is incremedtbyt whenever the model does a delay
of t.

2.2 Assembly line example

An assembly processé assembles three different parts that are supplied by thnegliers G.
The order in which the parts are supplied is unknown, but geechshould be received by the
assembly process as soon as possible. When all three paetdhben received, assembly may
start. Assembly takes units of time. When the products have been assembled, teeseat to
an exit proces€. Figure 3 shows the iconic model of the assembly line, whécinodeled as a
discrete-event system. For thanodel of the assembly line, first two types are declared. ype t

OF>0=N0

c

Figure 3: Iconic model of an assembly line.

‘part’, representing a part as a natural number, and the'agsy’, representing an assembled unit
as a 3-tuple of parts:

type part = nat
, assy= (part part, pard

The x model consists of parallel instantiations of the three gaoe processe§, the assembly
processA and the exit procesk:

model AssemblyLin@al tg, t1, t, ta : real) =

[chana, b, c: part d: assy

1 G(@,0,tp) | G(b, 1, ty) || G(c, 2, tp) || A@, b,c,d, ta) || E(d)
1

The channels, b, ¢, d are used for communication and synchronization betweerpahnallel
processes. Each generadsends a pant everyt time units:

proc G(chan a! : part, val n: nat, t : real) = |[x(At; a'!n)]

The assembly process receives the parts by means of thiepepahposition(a?x || b?y || ¢?2).
This ensures that each part is received as soon as possiideparallel composition terminates
when all parts have been received.

proc A(chan a?,b? c?: part d!:assy valt :real) =
[var X, y, z: part

sx((a?x||b?y|c?z); At; dI(X,Y,2))

1

The exit process is simply:
proc E(chan a?:assy = |[var X : assy:: x(a?x)]|

To understand the meaning of the model, the process iretiant can be replaced by their defini-
tions, as defined in (Beek, Man, Reniers, Rooda, and Samiff@006), and the model parameters
can be replaced by their values. Thus, the model instamti@&ssemblyLingb, 6, 7, 2) can be
rewritten into the following equivalent form:

model AssemblyLin@ =

[chana, b, c: part, d: assy

t[varn:nat=0, t:real =5 x(At; a'n) ||

lllvarn:nat=1, t:real =6: x(At; b!n)]

I fvarn:nat=2, t:real =7: %x(At; c!'n) ||

| [varX,y,z:part, t:real =2 x((a?x || b?y|c?z); At; d!(X,y,2))]
I I[var X : assy:: x(d ?x)]|

1

Initially, the first statements of the repetitions are erdbIThe first statement of the repetition of
the assembly process is a parallel composition of threeveestatementsa(?x || b?y || ¢?2).
Enabling a parallel composition enables its componentserdfhre, initially the statementat,
At, At, a?x, b?y, c?z, andd ?x are enabled. Each of these statements can delay. A delay
statementAt behaves as a timer that can delay for at magne units. After this, the timer is
expired and can terminate by means of an action. The valut®dhree local variablesare 5,

6, and 7, respectively. Therefore, initially, a (maximune)ay of 5 time units is possible. After
this, the first timer terminates by means of an action, andd¢inel statemera!n is enabled. The
enabled statements are nadn, At, At, a?x, b?y, c?z, d?x, where the two timers modeled
by At and At can delay for 1 and 2 remaining time units, respectivelypteeéxpiring. We now
have an enabled pair of a send and a receive statement onntleecannel that are placed in

parallel: a! n anda ?x. This pair can simultaneously do a send and a receive adotlowed

by joint termination. The result is comparable to the (distied) execution of the assignment
X :=n, or X := 0, since the value of the first variabfeis 0. After this, the send and receive
statements are disabled. Disablingaofn enables the delay statemett again. The enabled
statements are nowt, At, At, b?y, c?z,d ?x, where the three timers need to delay for another
5, 1, and 2 time units, respectively, before expiring. Afspiration of the second and third
timer, communication of 1 via channkland 2 via channet takes place, respectively. Then, the
parallel composition terminates, enabling the delay siatdé At of the assembly process. After
this intuitive explanation of thg language by means of examples, the next sections moregisecis
define the syntax and semantics.

2.3 Statement syntax

This section defines the syntax of a considerable and repedse subset ofy models using

a Backus-Naur (BNF) like notation. The symijadlefines choice, and notatidiZ}* denotes a
sequence of zero or moig's. Statements can be divided in two classes: the atomierstaits,
that represent the smallest statement units; and the cordmtatements, that are constructed from
one or more (atomic) statements by means of operators. Thaxsyf the atomig statements, is
as follows:

Patom ::= SKip non-delayable action

| X:=e non-delayable (multi-)assignment
| [skip] delayable action
| [X:=¢€] delayable (multi-)assignment
| hl'e | h delayable send
| h?x | h? delayable receive
| Ad delay
| u delay predicate,

wherex ande denote comma separated variables. . . , x, and expressione,, ..., &,, respec-

tively, for n > 1, h denotes a channel, anlddenotes an expression of type real. Delay predicate
u denotes a predicate over variables (including the varidbie) and dotted continuous variables
(derivatives). Delay predicates may occur in the form ofedéntial algebraic equations, such as
X =Y, Yy =n,orin the form of a constraint or invariant, suchxas 1.

The syntax of the compoung statements is as follows:

p:: Patom atomic
p; p sequential composition
b—p guard operator
pllp alternative composition
x| loop statement

|

|

|

| plp parallel composition

|

| b > p while statement

| [[D:p] variable and channel scope operator

| id(e) process instantiation

| pr recursion scope operator (see Sections 3.2 and 3.3),
where guard denotes a predicate over variables. The operators aré ifstiescending order of
their binding strength as followg, 5 = 1.5 . {ll , [}. The operators inside the braces have

equal binding strength. Parentheses may be used to grdaemstats. For example,:=1; y :=
X[x:=2; y:=2xmeangx :=1; y:=Xx) || (x:=2; y:= 2x). To avoid confusion, parenthesis
are obligatory when alternative composition and paratkehposition are used together. Eg]

g || r is not allowed and should either be written(@s]] q) || r,orasp [(q || r).

2.4 Semantic framework

In this chapter, the meaning (semantics) gf enodel is informally defined in terms of delay be-
havior and action behavior, based on the formal semantipsesented in (Beek, Man, Reniers,
Rooda, and Schiffelers 2006). Delay behavior involves ipgssf time, where the semantics
defines for each variable how its value changes as a functitme. Action behavior is instanta-

neous: time does not progress, and the semantics definesctorariable the relation between its
value before and after the action.

Atomic statements can be disabled or enabled. Actions dagislare done bgnabled atomic
statements, with one exception only: an enabled guardéehstatb — p, with a guard that is
false can do any delay. Atomic statements terminate by dmingction. They never terminate by
doing a delay. A statement that terminates becomes disagldding so.

Compound statements combine (sub-)statements by meansedtors. The operator de-
fines the relation between enabling, disabling and ternoinaif the compound statement and its
sub-statements. Enabling or disabling a compound stateis@efined in terms of enabling or
disabling its sub-statements. Enabling a compound stateimglies enabling one or more of its
sub-statements. E.g. enabling a sequential composition . ; p, implies enabling the first state-
ment p;, whereas enabling a parallel compositipn|| ... | pn implies enabling all statements
P1...Pn-

Execution of ay modelM, defined asnodel M(Dg) = |[D1 :: po]I, takes place by executing
a sequence of delays and actions in the following way:

e Atthe start, statemen is enabled.

e Any enabled skip statement or assignment statement (ddéaga non-delayable) can do an
action.

e An enabled pair of a send and a receive statement on the sameeththat are placed in
parallel can simultaneously do a send and a receive actitlowied by joint termination.
The result, in terms of values of variables, is comparabléhé¢o(distributed) execution of a
(multi)-assignment. E.g. execution of the communicatiotioa inh! 1 || h ?x is comparable
to execution of the assignmext= 1.

e The model can do delays only when and for as long as:

— All enabled statements can delay. The delayable versiotieeagkip statement, assign-
ment, and send and receive statements can always delayofthaetayable versions can
never delay). A delay statementd can delay for as long as its internal timer is not ex-
pired (see Section 2.5.3), and the set of all enabled detiqates can delay for as long
as they have a solution. Such a solution defines the valué® ofariables as a function
of time for the period of the delay.

Note that the set of enabled statements may change whilgniglal he reason for this is
the guarded statemelnt—> p, because the value of the guard can change while delaying,
due to changes in the values of continuous or algebraichlasaised irb.

— No parallel pair of a send and a receive statement on the shareel is enabled or
becomes enabled. This is because, by default, channglsiia urgent. communication
or synchronization cannot be postponed by delaying.

o When different actions and/or delays are possible, anyaseitan be chosen. This is referred
to as nondeterministic choice. Note that delays may alwaysHworter than the maximum
possible length.

The values of the discrete and continuous variables aredsiormemory. The values of the
algebraic variables are not stored. This means that thiingtgquoint of the trajectory of a discrete
or continuous variable equals its last value stored in mgnbie starting point of the trajectory
of an algebraic variables can be any value that is allowedhéghabled equations.

In models of physical systems, the delay behavior of theicoatus and algebraic variables is
usually uniquely determined: there is usually only one tsatuof the set of enabled differential
algebraic equations. Multiple delays / solutions can besedwby under-specified systems of
equations, where there are less equations than variableg delay predicates that allow multiple
solutions, such as ‘true’ ot € [0, 1].

The action behavior of the discrete, continuous and algeleaiables is as follows:

e The discrete and continuous variables do not change as la oésgtions unless the change
is explicitly specified, for example by means of an assigrtmanby receiving a value via a
channel.

e The algebraic variables can, in principle, change arliligrar actions. In most models, their
values are defined by equations.

2.5 Semantics of atomic statements
2.5.1 Skip and multi-assignment

An enabled skip statement can do an action, and then temsinktcorresponds to an assignment
X := X, because the values of continuous and discrete variabdekefairunchanged. The skip
statement can be used to make a choice in an alternative sititopstatement, because it executes
an action (see proce3ankin Section 3.2).

An enabledmulti-assignmenstatemenk, := e, for n > 1 can do an action that changes the
values of the variables,, . .., X, in one step to the values of expressiens. . ., e,, respectively,
and then terminates. Far= 1, this gives a normal assignment= e.

2.5.2 Delay predicate

An enableddelay predicate wan perform delays but no actions. Delay predicates restric
allowed trajectories of the variables while delaying infsacway that at each time point during
the delay the delay predicate holds (its value must be tw@dn all variables and dotted variables
in the predicate are replaced by their current value.

Delay predicates also restrict the action behaviory ofnodels, because the enabled delay
predicates must also hold before and after each actionctntfee enabled delay predicates of a
model must hold at all times. This is referred to as the ‘cairsit equation semantics’.

The relation between the trajectory of a continuous vagiabland the trajectory of its
‘derivative’ X is given by the Caratheodory solution conceptt) = x(0) + fé X(s)ds. This

10

allows a non-smooth (but continuous) trajectory for a défeial variablex in the case that
the trajectory of its ‘derivative’x is non-smooth or even discontinuous, as in, for example,
model M() = |[cont X : real = 0:: X = stetime — 1)]|, where stefy) equals 0 fory < 0
and 1 fory > 0.

2.5.3 Delay statement

A delay statemenid behaves as a timer that can be in three modes: reset, runngxgpioed.
A timer that is in mode running keeps track of the remainimggett.,, before expiring. Initially,
timers are in mode reset. In modes reset and running, a tiamedelay; in mode expired, it can
terminate by means of an action. If the timer is enabled,atslior is as follows:

¢ In mode reset, when the valgef expressiord is bigger than zero, the timer can do a detlay
fort <c. Ift < c, the new mode after the delay is running wiith, = ¢ — t. If t = ¢, the new
mode is expired.

e In mode running, the timer can do a delay< tey, to mode running t(< teyp) or expired
(t = texp). It switches to mode reset when it is disabled as a resultabioice being made in
an alternative composition (see Section 2.6.3).

E.g. inx:=0;%(A3[x=1[] x >1— x:= 0), when the delay statement / timex3
becomes running, it switches to mode reset after 1 time beitause of execution of the
(second, guarded) assignment= 0, which enforces a choice in the alternative composition
and disables the timer.

e In mode expired, or in mode reset when the valud expressiord equals zero, the timer can
do an action, accompanied by termination to mode resetsdt@Witches to mode reset when
it is disabled as a result of a choice being made in an aligenebmposition.

The mode of a timer remains unchanged when it is disabled esu#t of the value of a guard
becoming false. E.g. in s{@rtime) > 0 — A1, the timer expires after two time units, that is after
two periods of the sine function, because the timer onlyydelehen the sine function is positive.
As a final example, considefth ?d; Ad) || x(h!1; h!2). The first delay of the timer is 1, the
second delay is 2, and then the cycle is repeated.

2.6 Semantics of compound statements

2.6.1 Sequential composition

In asequential composition,p. . .; pn (n > 1), only one statememng, 1 <i < n, can be enabled at
the same time. Enabling a sequential compositen. . . ; p, implies enabling its first statement
p:.. When statemenp; (1 <i < n — 1) terminates (and is therefore also disabled), the next
statementp;,; becomes enabled. The sequential composition terminatas tepmination of its
last statemenpy,.

2.6.2 Guard operator

Enabling of a guarded statement enables its gbar@ehavior of a guarded statemdmnt> p
depends on the value of the gudrd

11

e Statemenp is enabled while the guard is enabled and the value of thelgs&ue. Execution
of the firstactionby p disables the guard. Thus, after this first action, the vafubeoguard
becomes irrelevant.

e Statementp is disabled while the value of the guard is false. The guasiattmenb — p
can, in principle, do any delay while the guard is enabledi@nehlue is false; only at the start
point and end point of such a delay, the value of the guard reaye.

When a guarded statement occurs in parallel with anotheansént, as i || b — p, the value
of the guard can change due to actions of statergemthich may cause statemeptto change
from being disabled to enabled or vice versa. b.g= false (Al; b := true| b — skip).

When inq || b — p, the guardb contains continuous or algebraic variables, gntbntains
one or more enabled delay predicates, the value of the guaycchrange during a delay, causing
statemenp to change from being disabled to enabled or vice versax&=gl || x > 1 — x :=0.

2.6.3 Alternative composition

Enablingp; || ... | p. enables the statemens, ..., p,. Execution of an action by any one of
the statement$; ... p, disables the other statements. In this way, execution ofitsieaction
makes a choice. When one of the statememts .., p, terminates, the alternative composition
pi[... [pnalsoterminates.

2.6.4 Parallelism

Enablingp: || ... || pn enables the statemengs, ..., p,. When a statemenp;, 1 <i <n,
executes an action, the other statements remain enabledparallel compositiop; || ... || pn
terminates when the statememis . . ., p, have all terminated.

Informally, we often refer to the statements, ..., p, occurring inpy || ... || p, as parallel

processes. Parallel processes interact by means of shaiatiles or by means of synchronous
point-to-point communication or synchronization via amta. Communication iry is the send-
ing of values of one or more expressions by one parallel gge@ a channel to another parallel
process, where the received values are stored in varidhlease no values are sent and received,
we refer to synchronization instead of communication.

2.6.5 Loop and while statement

Loop statement:p represents the infinite repetition of statem@nt\Whensxp is enabled,p is
enabled. Termination gb results in re-enabling op.

The while statemertt > p can be interpreted as “whitedo p”. Enabling ofb = pwhen

b is true enablep (by means of an action), and enablingtof-> p whenb is false, leads to
termination of the while statement (by means of an action).

2.6.6 Variable and channel scope operator

A variable and channel scope operator may introduce newhlas and new channels. Enabling of
a variable and channel scope staternjeit :: p]|, where the local declaration pdd introduces
new variables and/or channels (see Sections 2.1 and 2:2rme the variable initializations
specified inD and enables statememt Termination ofp terminates the scope statemgm :: p]|.
Any occurrence of a variable or channelprthat is declared irD refers to that local variable or

12

channel and not to any more global declaration of the vagiablchannel with the same name, if
such a more global declaration should exist.

3 Algebraic reasoning and verification

3.1 Introduction

The x process algebra has strong support for modular compoditi@lowing unrestricted com-
bination of operators such as sequential and parallel csitigo, by providing statements for
scoping, by providing process definition and instantigtiamd by providing different interaction
mechanisms, namely synchronous communication and sharedbles.

The fact that the language is a process algebra with a wide range of staterpetastially
complicates the development of tools fpr since the implementations have to deal with all pos-
sible combinations of thg atomic statements and the operators that are defined on Tiamis
where the process algebraic approach of equational remgdhiat allows rewriting models to a
simpler form, is essential.

To illustrate the required implementation efforts, coesithe following implementations that
are developed: a Python implementation for rapid protoitypa C implementation for fast model
execution; and an implementation based on the MATLAB Sinkug-functions (The MathWorks,
Inc 2005), where & model is translated to an S-function block. Furthermoretehs an imple-
mentation for real-time control (Hofkamp 2001). In (Boknircka, Wijs, Luttik, van de Mortel-
Fronczak, Baeten, Fokkink, and Rooda 2005) it has been shizatrdifferent model checkers
each have their own strengths and weaknesses. Thereforeriication, translations to several
tools are defined. In particular, for hybrid models a traimfato the hybrid 1/0O automaton based
PHAver (Frehse 2005) model checker is defined. For timed tadde following translations are
defined: (1) a translation to the action-based process @AgebRL (Groote 1997), used as input
language for the verification tool CADP (Fernandez, Gara¥elbrat, Mounier, Mateescu, and
Sighireanu 1996); (2) a translation to PROMELA, a statestagnperative language, used as in-
put language for the verification tool SPIN (Holzmann 20G8)d (3) a translation to the timed
automaton based input language of the UPPAAL (Larsen, Bstte, and Yi 1997) verification
tool. In future, for verification of hybrid models, additiaintranslations may be considered to
tools such as MTECH (Alur, Henzinger, and Ho 1996), or one of the many other ty/ionodel
checkers.

Instead of defining the implementations mentioned abovéeriull y language as defined in
Section 2.3, the process algebraic approach of equatieasbning makes it possible to transform
x models in a series of steps to a (much simpler) normal formh tamefine the implementations
on the normal form. The origingt model and its normal form are bisimilar, which ensures that
relevant model properties are preserved. The normal fosrstrang syntactical restrictions, no
parallel composition operator, and is quite similar to arft/lautomaton. Currently, correctness
proofs are developed, and in the near future, implememnttwill be redesigned based on the
normal form.

The steps to the normal form are as follows. First of all, thecpss instantiations are elimi-
nated, by replacing them by their defining bodies, and rapaihe formal parameters by actual
arguments. Next, parallel composition is eliminated bygs$aws of process algebra, in particular
a so-callecexpansion law{not given here). An example of a process algebra law 8pecifying
that the guard distributes over alternative compositidn-is (p | q) = b— p[b— q. Finally,
the normal form may be simplified further, taking advantafjthe fact that it no longer contains
parallel composition. Note that it is possible to constmetdels for which the normal form can-

13

not be (easily) generated. These exceptions are not detiisghis chapter, since they do not
restrict translation to the normal form for practical pusps. For a definition of the normal form
see Section 3.5.

3.2 Bottle filling line example

Figure 4 shows a bottle filling line, based on (Baeten and Kliolatg 2002), consisting of a storage
tank that is continuously filled with a flo®;,, a conveyor belt that supplies empty bottles, and a
valve that is opened when an empty bottle is below the filliogate, and is closed when the bottle
is full. When a bottle has been filled, the conveyor startsingpto put the next bottle under the
filling nozzle, which takes one unit of time. When the stortayek is not empty, the bottle filling
flow Q equalsQset When the storage tank is empty, the bottle filling flow equlaésflow Qjn.
The system should operate in such a way that overflow of tHedars not occur. We assume

Qin < Qset
Qin

o

Vr

Q
{><} ¢ open close

Vi

(©

Figure 4: Filling Line. Figure 5: Iconic model of the filling line.

Figure 5 shows an iconic representation of the model of thiediline. It consists of the
processeJankand Conveyorthat interact by means of the channefgnandclose and shared
variable Q. The model is defined below. It has two parameters: the iniblume V4 of the
storage tank, and the val@,, of the flow that is used to fill the storage tank. The constéhis
Vrmax andVemax define the maximum value of the bottle filling flo@, the maximum volume
of the storage tank, and the filling volume of the bottlespeetively. The modeFillingLine
consists of the algebraic variabfg the channelepenandclose and the parallel composition of
the process instantiations for the tank and the conveyor.

const Qsget: real = 3
) VTmaX N real = 20
, VBmaX N real = 10

model FillingLine(val Vg, Qin : real) =

[alg Q : real, chan open close: void

: Tank Q, open close V1o, Qin) || ConveyorQ, open close
1

The tank process has a local continuous varidkl¢hat is initialized toVyg. Its process body
is a recursion scope consisting of three modes: closedgopand openedempty that correspond

14

to the valve being closed, the valve being open, and the \@direy open while the storage tank

is empty. The syntax and semantics of recursion scopes isedeiin Section 3.3. In the mode
opened, the storage tank is usually not empty. When thegadeak is empty in mode opened,
the delayable skip statemejskip] may be executed causing the next mode to be openedempty.
Due to the consistent equation semantics, the skip stateca@nbe executed only if the delay
predicate in the next mode openedempty holds. This meams@athers, thatt = 0 must hold.
Therefore, the transition to mode openedempty can be takgndien the storage tank is empty.
Note that the comma in delay predicates denotes conjunctibg. Vr = Qi,, Q = 0 means

VT:Qin/\Q:O-

proc Tankalg Q : real, chan oper?, close? : void, val Vg, Qjn : real) =
[cont Vr : real = Vg
| mode closed=
(Vr = Qin, Q =0, Vr < Vrmax || oper?; opened)
, mode opened=
(Vr=Qin—Q, Q= Qset, 0= Vr < Vimax
| [skip]; openedempty
| close?; closed
)
, mode openedempty=
(Vr=0,Q = Qjn || close?; closed)
:: closed
1
1

Proces<Conveyorsupplies an empty bottle in 1 unit of tim¥g := 0; A1l). Then it synchro-
nizes with the storage tank process by means of the senchstatteperi, and it proceeds in mode
filling. When the bottle is filled in mode filling\Mg > Vemax), the process synchronizes with the
storage tank to close the valve and returns to mode moving.iritial mode is moving.

proc Conveyofalg Q : real, chan open, closé : void) =
[cont Vg :real=0
= |l mode moving= (Vg := 0; A1l; oper; filling)
, mode filling = (Vg > Vamax — clos€; moving)
:: moving
]
Ve =Q
1

Figure 6 shows the results of the first 12 time units of a sitiafarun of the model
FillingLine(5, 1.5), that is with model parametedro = 5 and Q;, = 1.5. The graph shows
that the first bottle is filled from time point 1 until time poid + 10/3~ 4.33. Filling of the
second bottle starts 1 time unit later, and somewhat aftené tnits, the storage tank becomes
empty, so that filling continues at the reduced flow rate.

3.3 Syntax and semantics of the recursion scope operator

The syntax of the recursion scope operator staterpgnthat was introduced in Section 2.3, and
first used in Section 3.2 is defined as:

Pr::= |[mode X = pt {,mode X = p*}*: X1,

15

14
12
10

o N b~ O 0

Figure 6: Simulation results of modEillingLine.

whereX denotes a recursion variable, and statempntsonsist of statements (see Section 2.3)
to which recursion variableX are added:

pru=p |l X | pt]p" | b= pt | p;p*

The syntax enforces any recursion variafléo occur only at the end of a sequential compo-
sition. An additional restriction is that each recursioose operator must be ‘complete’. This
means that in

[mode X3 = p{, ..., mode X, = pf = X¢ 1,

all occurrences of free recursion variablegjn(1 < i < n) must be defined in the recursion scope
operator itself. These restrictions enforce structuredaisecursion: only one recursion variable
X; with corresponding statemepf™ can be executed at the same time, and termination of any of
the statementg; terminates the scope operator itself. This structured fisecarsion simplifies
analysis ofy models, it simplifies the translation to the normal form axdssed in Section 3, and

it simplifies tool support fory.

The meaning of recursion scope operators is as follows. |Ewgihe recursion scope operator
[Xy = pf, ..., Xn=pi = X 1, enables the statemeXt (1 <i < n). When a recursion variable
X; (1 < j <n)is enabled (or disabled), its defining statempnis enabled (or disabled) instead.
When a defining statemepf terminates, the recursion scope operator terminates.

3.4 Elimination of process instantiation

Elimination of the process instantiations for ffremkandConveyomprocesses by replacing the pro-
cess instantiations by their definitions, as defined in (Bdbtdn, Reniers, Rooda, and Schiffelers
2006), leads to the following model:

model FillingLine(val Vg, Qi : real) =
[alg Q : real, chan open close: void
i | cont Vi : real = Vi
, var VT"0 : real = Vg, Qi"n s real = Qi
= [mode closed=
(Vr=QkL, Q=0, Vi < Vrma [Oper?; opened)

in»

16

, mode opened=
(Vr= :}1_Qa Q = Qset, 0 < Vr < Vrmax
| [skip]; openedempty
[| close?; closed
)

, mode openedempty=
(Vr=0,Q= QL [close?; closed)

:: closed

1l

1

Il [cont Vg :real=0
2 | mode moving= (Vg := 0; Al; openr; filling)
, mode filling = (Vg > Vamax — Clos€; moving)
2 moving
1
VB =Q
1
1

To avoid naming conflicts between the formal parametggsand Qi, declared in the process
definition for processfank and the actual arguments and Qj, in the process instantiation
Tank Q, open close Vg, Qin), the newly defined local discrete variables that are usedltbthe
values of the last two parameters of the process instantiaéire renamed td}, and Q..

3.5 Syntax of the normal form

A slightly simplified syntax for the normal form ig is given by a model with on the outer level
a global variable and channel declaratibnsee Sections 2.1 and 2.2), on the inner level a local
variable and channel declarati@h and one recursion scope operator statement:

Xnorm = model id(Dy) = [D= [D [X = Prorm{, X = Prorm}™ = X 111,

The normalized statemengsom, used to define the recursion variabdsmay consist of un-
delayable normalized atomic statemeptg (defined below). Such a normalized atomic statement
may be prefixed by a guaty and/or it may be made delayable (g pna and[pnal). Sequen-
tial composition is allowed only in the form of such (guardadd/or delayable) atomic statements
followed by a recursion variable. Finally, all of these staents may be part of alternative com-
position:

Prorm ::= Pnga (guarded) atomic action
| u delay predicate
| Pngas X atomic action followed by recursion variable

| Prorm [| Prorm alternative compositian

where the normalized guarded atomic action statemggptsare defined by:

Pngai= Pna non-delayable atomic action statement
| b— pna guarded non-delayable atomic action statement
| [Pnal delayable atomic action statement

| b— [pnal guarded delayable atomic action statement,

17

and the normalized atomic action statemeamys that are all non-delayable, are defined by:

Pna::= sKip skip statement
| x:=e multi-assignment
| h!? synchronization via channkel
| h!?x:=e communication via channél

The synchronization statememt? and communication statemént?x := e are required because
of the fact that there is no parallel composition in the ndized form. The parallel composition
h! || h? is normalized tdh !?, andh!e || h ?x is normalized tch !?x := e. The statemenh !?

is comparable to the skip statement, and the stateim&’x := e is comparable to the multi-
assignment statemert:= e. The effect on the values of the variables is the same. Tharely

a small difference with respect to the occurrence of chahnebssibly accompanied by the value
of g, in the transition system.

As an example, that clarifies how the delay statement is e#ited in the translation to the
normal form, consider the statement= 2; A1 which is first rewritten ax := 2; |[cont t :
real=1:1t=—-1[t <0— skip] and then normalized to

[contt : real

[Xo=(Xx,t:=2,1; X1)
, X=(t=-1]t<0— skip)
= Xo
1

1

The normal form makes it easy to analyze system behaviortaiplifies tool implementa-
tions in the following way. When a model is defined as

model M(val X : t) =

Il Do

2|l D1
S Xy = Prormys - - -5 Xn = Prorm, = Xi 1
1

I,

M (c) defines a particular model instantiation. At each point afogtion of this model instan-
tiation, exactly one recursion variabl§ is enabled, so that the set of all possible next steps is
determined by the ternp,om only. In addition, the ternpom, defines for each action the re-
cursion variable (if any) that is enabled after executiothef action. Process definition, process
instantiation, parallel composition, send and receiviestants, the loop statement, while do state-
ment, and delay statement are no longer present. Also sgopis been eliminated, apart from
one top level variable and channel scope operator, and prievel recursion scope operator.

3.6 Elimination of parallel composition

Elimination of parallel composition and translation to ttermal form as discussed in Section 3.5
leads to the model:

model FillingLine(val Vg, Qin : real) =
[alg Q : real, chan open close: void
= [cont Vi : real = VTLO, Vg :real=0

18

, cont t : real, var V), : real = Vo, QL : real = Qip
|l moving.closed=
(Vr= f}p Q=0, Vr < Vrmax, VB =Q
| Vs,t:=0,1;, moving_closed
)
, moving_closed=
(VT: :ﬁ»QZO,VTSVTmax,VB:Qat:_l
| t <0 — skip; moving _closed
)
, moving _closed=
(Vr=0QL, Q=0, Vt < Vimax, V6 =Q
[| open!?; filling_opened
)
, filling _opened=
(Vr=0QL —Q, Q= Qset, 0<Vr < Vrmax, Vs =Q
[[skip]; filling_openedempty
| V& = Vemax — close!?; moving.closed
)
, filling _openedempty=
(VTZO’ Q:Qh]’ VB:Q
| V& > Vgmax — close!?; moving.closed
)
:: moving closed
1
1
I

3.7 Substitution of constants and additional elimination

The model below is the result of substitution of the globalifined constants by their values.
Furthermore, the discrete variabl@s, andV,,, that were introduced by elimination of the process
instantiations, are eliminated. Also, the presence of tdelayable statemenigs, t := 0, 1
andopen!? in modes movinglosed and movingclosed, respectively, allows elimination of the
differential equations in these modes.

Most hybrid automaton based model checkers, such as PHRuehge 2005) and HI'ECH
(Henzinger, Ho, and Wong-Toi 1995), do not (yet) have urgeanisitions that can be combined
with guards. Therefore, the urgency in the guarded stateniememoved by making the state-
ments that are guarded delayable, and adding the closetioregathe guard as an additional
delay predicate (invariant). E.§.< 0 — skip is rewritten a$ > 0[] t < 0 — [skip].

model FillingLine(val Vg, Qin : real) =
[alg Q : real, chan open close: void
= |[cont Vt :real = Vg, Vg :real =0, t : real
i |[moving closed=
(Vr=<20, Q=0
| Vs,t:=0,1;, moving_closed
)
, moving_closed=
(Vr=Qin, Q=0, Vy <20, Vg=0,f=-1,t>0

19

| t <0 — [skipl; moving _closed
)
, moving _closed=
(Vr<20, Q=0
| open!?; filling _opened
)
, filling _opened=
(Vr=Qn—3,Q=30=<Vr<20 Vg=3, Vg <10
[[skip]; filling_openedempty
| Vs > 10 — [close!?]; movingclosed
)
, filling _openedempty= .
(Vr=0, Q=Qin, VB =0Q, Vg <10
| Vs = 10 — [close!?]; movingclosed
)
:: moving closed
1
1
I

Figure 7 shows a graphical representation of the model. Bynsef straightforward mathe-
matical analysis of the model, it can be shown that overfloveneccurs ifQ;, < 30/13.

V1 = Vo Vg > 10— VB=Q

Vg =0 moving-closed [close!?] filling .openedempty
Vr <20 Vr=0
Q=0 Q= Qin

Vg <10

Vg.t:=0,1

[skip]

t=-1

. Ve =3
Vg =0 . ;
Vr = Qin moving; _closed T = Qin —
i filling _opened
movingg-closed VT <20
t<0— _ 0<Vr<20
VT <20 = Q=0 I
Q=0 [skip] Q=

Vg <10
t>0

Figure 7: Graphical representation of the normalizechodel.

20

3.8 Tool based verification

As a final step, for the purpose of tool-based verification,ttodel is translated to the input lan-
guage of the hybrid IO automaton based tool PHAVer (Freh8R®Bince most hybrid automata,
including PHAVer, do not know the concept of an algebraidalae, first the algebraic variables
are eliminated from thg model. Because of the consistent equation semantigs @ach occur-
rence of an algebraic variable in the model can simply beacegl by the right hand side of its
defining equation. The urgency due to unguarded undelagtdtiements is in principle translated
by defining the corresponding flow clause as false. The iaguRHAVer model follows below.
Note that an additional variableis introduced and the derivativesa andvt need to be defined
in all locations, because of the current inability of PHAMedefine false as flow clause.

automaton filling_line
state_var: Vt,Vb,t,x;
parameter: Vt0,Qin;
synclabs : open,close,tau;
loc moving_closed:
while Vt <= 20 & x==0 wait {x’==1 & Vb’==0 & Vt’==0};
when true sync tau do {Vt’==Vt & Vb’==0 & t’==1 & x’==0}
goto moving0O_closed;
loc movingO_closed:
while Vt <= 20 & t >= 0 wait {Vb’==0 & t’==-1 & Vt==30/13};
when t <= 0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t & x’==0}
goto movingl_closed;
loc movingl_closed:
while Vt <= 20 & x==0 wait {x’==1 & Vb’==0 & Vt’==0};
when true sync open do {Vt’==Vt & Vb’==Vb & t’==t}
goto filling_opened;
loc filling_ opened:
while Vt >= 0 & Vt <= 20 & Vb <= 10 wait {Vb’==3 & Vt’==30/13-3};
when Vt==0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t}
goto filling_openedempty;
when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & x’==03}
goto moving_closed;
loc filling_openedempty:
while Vt == 0 & Vb <= 10 wait {Vb’==30/13};
when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & x’==03}
goto moving_closed;
initially moving_closed & Vt == Vt0 & Vb==0 & x==0;
end

The following properties were derived: @, = 30/13 and 0< Vg < Vrmax— 30/13, overflow
does not occur, and the storage tank does not become empiyfilling a bottle. The volume of
the storage tank then remains in the regiGg < Vy < Vqo + 30/13. If Qjn > 30/13, eventually
overflow occurs. 1fQi, < 30/13, eventually the container becomes empty every time deliett
filled. In this small example, these properties can also bweabk by means of straightforward
mathematical analysis of themodels of Section 3.6 or 3.7.

4 Conclusions

Process algebra originated in the domain of theoreticalpcen science, where it was designed
for the purpose of reasoning about the behavior of concudisarete-event systems. Recently,
process algebra theory has been extended to include alSowmrs-time systems, and combined
discrete-event / continuous-time, or hybrid systems. Fh@ocess algebra, that has been used

21

as an example in this chapter, illustrates that procesdi@ge not only suited to verification,
but also very well suited to high level modeling and simalatdof complex dynamical systems.
The compositional semantics of a process algebra faetitatodular composition of processes
and statements using not only parallel composition, but sésjuential composition, and in fact
any kind of combination of statements by means of the proalgebra operators. The equational
reasoning, that is characteristic of process algebraysltewriting of complex specifications to a
straightforward normal form, where parallel compositionl anany other operators and statements
have been eliminated. For the process algebra, the normal form is very similar to a hybrid
automaton, and thus simplifies the use and development lsfflmosimulation and verification.

Acknowledgments

The authors thank Albert Hofkamp for providing the main fiimality of the x toolset, and for
many helpful comments on drafts of this text. They thank Rakunissen for his preparative work
on the bottle filling example, and for analysis of the prajesrof the resulting hybrid automaton
using PHAVer. Finally, they thank Ramon Schiffelers forlglireg hybrid simulation ofy models.

References

Alur, R., T. A. Henzinger, and P. H. Ho (1996). Automatic syotib verification of embedded
systemslEEE Transactions on Software Engineering 22 181-201.

Baeten, J. C. M. and C. A. Middelburg (200Brocess Algebra with TimindeACTS Mono-
graphs in Theoretical Computer Science. Springer-Verlag.

Baeten, J. C. M. and W. P. Weijland (199B)ocess Algebravolume 18 ofCambridge Tracts in
Theoretical Computer Scienc€ambridge, United Kingdom: Cambridge University Press.

Beek, D. A. v., K. L. Man, M. A. Reniers, J. E. Rooda, and R. RSdhiffelers (2006). Syntax
and consistent equation semantics of hybrid Gbiurnal of Logic and Algebraic Program-
ming 6§1-2), 129-210.

Beek, D. A. v. and J. E. Rooda (2000). Languages and applieain hybrid modelling and
simulation: Positioning of ChiControl Engineering Practice(@), 81-91.

Beek, D. A. v., A. van den Ham, and J. E. Rooda (2002). Modgliand control of process
industry batch production systems. 16th Triennial World Congress of the International
Federation of Automatic ControBarcelona. CD-ROM.

Bergstra, J. A. and J. W. Klop (1984). Process algebra focreymous communicatiotinfor-
mation and Control 6(1/3), 109-137.

Bergstra, J. A. and C. A. Middelburg (2005). Process algétraybrid systemsTheoretical
Computer Science 38%3), 215-280.

Bortnik, E. M., N. Tr€ka, A. J. Wijs, B. Luttik, J. M. van de Migl-Fronczak, J. C. M. Baeten,
W. J. Fokkink, and J. E. Rooda (2005). Analyzing a Chi model tifrntable system using
Spin, CADP and Uppaallournal of Logic and Algebraic Programming &), 51-104.

Bundy, A. (1999). A survey of automated deduction. In M. Wirmlge and M. Veloso (Eds.),
Artificial Intelligence Today. Recent Trends and Develamtgé/olume 1600 ofLecture
Notes in Computer Sciengap. 153-174. Springer Verlag.

Cassandras, C. G. and S. Lafortune (199%yoduction to Discrete Event Systen8pringer
International Series on Discrete Event Dynamic Systemsn&gr.

22

Clarke, E. M., O. Grumberg, and D. A. Peled (200@pdel CheckingMIT Press.

Cuijpers, P. J. L. and M. A. Reniers (2005). Hybrid proceggehita.Journal of Logic and
Algebraic Programming 62), 191-245.

Fabian, G. (1999)A Language and Simulator for Hybrid Syster®$. D. thesis, Eindhoven
University of Technology.

Fernandez, J. C., H. Garavel, A. Kerbrat, L. Mounier, R. Matel, and M. Sighireanu (1996).
CADRP - a protocol validation and verification toolbox. Bmoceedings 8th Conference on
Computer Aided Verification (CAV'96Yolume 1102 ofLecture Notes in Computer Sci-
ence pp. 437-440.

Frehse, G. (2005). PHAVer: Algorithmic verification of hydbrsystems past HyTech. In
M. Morari and L. Thiele (Eds.)Hybrid Systems: Computation and Control, 8th Inter-
national Workshop Volume 3414 ofLecture Notes in Computer Sciengap. 258-273.
Springer-Verlag.

Groote, J. F. (1997). The syntax and semantics of tim€&L. Technical Report SEN-R9709,
CWI, The Netherlands.

He, J. (1994). From CSP to hybrid systems. In A. W. Roscoe) (BdClassical Mind, Essays
in Honour of C.A.R. Hoarepp. 171-189. Prentice Hall.

Henzinger, T. A., P.-H. Ho, and H. Wong-Toi (1995). A userdguio Hr TECH. In First Inter-
national Conference on Tools and Algorithms for the Corwdtomn and Analysis of Systems
TACAS Lecture Notes in Computer Science 1019, pp. 41-71. Sprivigiag.

Hoare, C. A. R. (1985)Communicating Sequential Process&mnglewood-Cliffs: Prentice-
Hall.

Hofkamp, A. T. (2001)Reactive machine control, a simulation approach ugin@h. D. thesis,
Eindhoven University of Technology.

Holzmann, G. J. (2003)The SPIN Model Checker: Primer and Reference ManBakton:
Addison Wesley Professional.

Kunkel, P. and V. Mehrmann (200&ifferential-Algebraic Equations: Analysis and Numeri-
cal Solution EMS Publishing House.

Larsen, K. G., P. Pettersson, and W. Yi (1997pAdAL in a Nutshell.Int. Journal on Software
Tools for Technology Transfe1-2), 134-152.

Linz, P. (2001) An Introduction to Formal Languages and Automatanes and Bartlett.

Milner, R. (1980) A Calculus of Communicating Systerdslume 92 ofLecture Notes in Com-
puter ScienceSpringer-Verlag.

Milner, R. (1989).Communication and Concurrencirentice Hall.

Naumoski, G. and W. Alberts (1998). Discrete-Event Simulator for Systems Engineeritiy
D. thesis, Eindhoven University of Technology.

Rounds, W. C. and H. Song (2003). TheCalculus: A language for distributed control of
reconfigurable embedded systems. In O. Maler and A. Pnudb.YEHybrid Systems :
Computation and Control, 6th International Workshagcture Notes in Computer Science
2623, pp. 435—-449. Springer-Verlag.

The MathWorks, Inc (2005)Vriting S-functions, version. &ittp://www.mathworks.com.

23

