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Chapter 1

Introduction

In this document, the timegd (Chi) language is described. The timgdanguage is obtained
by means of simplification of hybrig (see [L7]). The intended use of is for modeling, simu-
lation, verification, and real-time control. Its applicatidomain consists of large and complex
manufacturing systems. Although the semantics is formdsined, the straightforward and
elegant syntax and semantics is also highly suited to nompoter scientists. In the remainder
of this report, we usually refer to timegdas x.

The most important concepts jnare summarized below:

1. Integration of a straightforward semantics and ease ofeting.

e Strong time deterministic alternative composition opatatWhere in the previous
version of discrete-event [5] the passage of time could result in making a choice
between the two operands of the alternative compositiomadge(weak time deter-
minism), as is the case in many process algebras, in thentuyreemantics, the
passage of time can never result in such a choice. In factpaleage of time can
only result in changes to the value of the predefined variable. In the previous ver-
sions of y, alternative compositior\5 [] x := 1 could non-deterministically choose
between doing a delay of< 5to A(5 — t), or doing the (undelayable) action:= 1
and then terminate. Strong time deterministic alternatmmposition means that al-
ternative composition can delay only if both process terarsdelay together, so that
A5 []x := 1 can only do the (non-delayable) actiwr= 1, and then terminate. Timed
automata have a comparable choice mechanism, apart fréadization. In a timed
automaton, action transitions cannot disappear as a m@stifthe passing. They can
only be disabled for the period of time that the associateatdyevaluates to false in
the valuation prescribed by the trajectory of the variablso, time passing cannot
result in the choice of a different location. The only changea timed automaton as
a result of time passing are changes in the values of thel@ily initially, depend-
ing on the initial edges and invariants, different initiathtions may be selected as a
result of time passing.
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e Delayable guards. Where the previous version of discretetey [5] had non-
delayable guards, such as found in many process algebmasyttenty semantics
has delayable guards. A non-delayable guard cannot pedatatay when it is false.
A delayable guard can delay when it is false until it becomas, tand thus facilitates
modeling. Consider for example a valwethat must be switched on when the time
becomes bigger thetyax. Using a delayable guard, this can be modeled simply by
time > thax — o = true.

Delayable guards ensure thatbin— h!b, the value of expressiob that is sent via
channelh is always true. Note that ! b can either do a send action, or delay for
an arbitrary period of time. Non-delayable guards may leadhtintuitive behavior,
because the value bfthat is sent may be false. Consider the process term:

((time < 3 — h!time) [ A10) || A5; h?y.

Using non-delayable guards, the process term can perforefag df at most 5, and
after performing an internal action transforms into

(h!time []A5) || h?y.

The guard that was true has disappeared in delaying. If tmezmication via channel
h takes place now, a value of 5 is sent, which does not confortimio < 3.

Using delayable guards on the other hand, the process terdodhe delay of at most
3, and transforms into:

(time <3 — h!time [[A7) | A2; h?y,

where the value ofime is 3. Communication is still not possible. After a delay of 2,
followed by an internal action, the process term transfaintes

(time < 3— h!time []A5) || h?y,
where the value ofime is 5, and after another delay of 5 it transforms into:
(time <3 — h!time [JAO) || h?y.

The time-out takes place, leading to?y. Due to the delayable guard, that does not
disappear while delaying, the communication does not téeep because the guard
cannot be satisfied.

e Integrated urgent and non-urgent actions. Thdormalism has both urgent and
non-urgent actions. The concept of urgency is defined in w flexible way: non-
delayable actions are by definition urgent and delayableracare non-urgent. This
is achieved without any additional operators. A maximabpess operator as defined
in [5] is not needed. The concept of urgency is built into the iitilial parallel com-
position, alternative composition and guard operatorsnsitker the non-delayable
actionx := 1. The following three process terms



— A5 x:=1
- A5[x:=1
— time=0~ (time<0— x:=1)

can each execute only the action= 1. Heretime = 0 ~ p denotes a process term
p for which the value oftime is initially zero. Consider now the delayable action
[x := 1]. The following three process terms

- A5 [x:=1]
- A5 [x:=1]
— time=0~ (time <0 — [x:=1)

can each execute either the action= 1 or perform a delay. This concept is compa-
rable to so-called urgent transitions that are presenbireample WprAAL [8].

Communication on channels can also be urgent and non-uagentUrPAAL. This is
achieved by means of an operator that partitions the setaofreis into a set of urgent
and a set of non-urgent channels. For the urgent channetsnoaication must take
place as soon as it becomes possible, whereas for the nentwigannels, no such
preference for communication is assumed.

e Syntactic extensions. Ease of modeling is further supgarte; by extension of the
small set of orthogonal core process terms with additionatgss terms for ease of
modeling. These additional process terms are defined by srafam straightforward
mapping into the core process terms.

2. Concepts for complex system specification.

e Process terms for scoping that integrate abstractionl, Vaciables, local channels and
recursion definitions.

e Parameterized process definition and process instamtititad enable:

— process re-use and
— encapsulation, hierarchical and/or modular compositigpracesses.

e CSP communication and synchronization concepts that adigmechronization and
communication without sharing of variables.

The history of they language dates back quite some time. It was originally desigs a mod-
eling and simulation language for specification of disceatent, continuous-time or combined
discrete-event/continuous-time models. The first sinoulft3] was suited to discrete-event
models only. The simulator was successfully applied togelaumber of industrial cases, such
as an integrated circuit manufacturing plant, a breweny,@ocess industry plantd]. Later,

the hybrid language and simulator were developed.§]. For the purpose of verification, the
discrete-event part of the language was mapped onto thegsadgebra, by means of a syn-
tactical translation. The semantics pf was defined using a structured operational semantics
style (SOS), bisimulation relations were derived, and aeholecker was builtg]. In this way,
verification of discrete-event models was made possiblg][ In [17], the hybrid x language
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was formally defined. The timegd language described in this report is obtained as a simplifi-
cation of hybridy. It is suited for discrete-event modeling. Whereyin it was not possible to
refer to the current (model) time, in timed there is a predefined variablane, that denotes
the current time.

This report is organized as follows. Chapkatescribes the syntax and informal semantics of the
timed x language. In Chapte3, the semantics of timegd is formally specified. An example

in Chapter4 illustrates the use of the language. A general translatibierse for translating
timed automata to timeg is given in Chapteb. The derivation of timedy from hybrid x is
described in Chaptes. In Chapter7, a notion of equivalence is defined, which is shown to be
a congruence for all timed operators. Furthermore, some useful properties of clasestty
process terms are given.



Chapter 2

Syntax and informal semantics of the
timed Chi language

This chapter presents a concise definition of the syntaxrd#ndmal semantics of timed. The
syntax definition is incomplete in the sense that the syntaxamlicates, expressions, etc, is not
defined. In the remainder of this report, we usually refeim@t y asy.

2.1 Processes

A x process is a triplép, o, E), wherep denotes a process termdenotes a valuation, artel
denotes an environment. The syntax of process terms iglinteal in Sectio2.2 Variables in

x are used to store information, i.e., during execution e have a value. A valuation is a
partial function from variables to values. Syntacticaflyyaluation is denoted by a set of pairs
{Xo — Cg, ..., Xy — Cn}, Wherex; denotes a variable argd its value. The valuatiosr and the
environmentE, together define the variables that exist in ghprocess and the variable classes
to which they belong.

Discrete behavior (instantaneous changes) gf process is represented by means of action
transitions, and delay behavior (time passing) is reptesgdny means of time transitions.

The variables are grouped into different classes with i@gpehe delay behavior and the action
behavior. With respect to the delay behavior, the variadteslivided into the following classes:

e The discrete variables, the values of which remain constaiie delaying.

e The predefined variableime’, that denotes the current time.

With respect to the action behavior, the variables are dividto two classes:
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e The non-jumping variables, the values of which by defaultndd change during action
transitions. Such changes need to be explicitly specifibis i§ the normal behavior of the
x variables. The predefined variahiene is by definition non-jumping.

e The jumping variables, the values of which by default cangumarbitrary values in ac-
tions. The values after jumping can be restricted by meatisedction predicate, or receive
process term, that caused the jump. Note that in principlapjng variables occur only as
an artefact of the parallel composition of a send and a reqaiwcess term, where the re-

ceive process term assigns the received value to a dis@gtbhe, see Sectiorgs3.2and
3.4.6

In x, an environment is a tuplél, R), whereJ denotes the set of jumping variables, aRd
denotes a recursive process definition. Itis requireddt@at(dom(o) \ {time}), and donto) N
dom(R) = #. A recursive process definition is a partial function fromsuesion variables to
process terms. Syntactically, a recursive process definisi denoted by a set of paifX, —
Po, ..., Xm — Pm}, WhereX; denotes a recursion variable apdthe process term defining it.

The domain of the valuatioa in a y process(p, o, E) consists of the discrete variables and
the predefined variablgme.

For ay processp, o, (J, R)), the combination of the variable classes for the delay atidrac
behavior leads to the following classes of variables:

e The set of discrete variabld3 is dom(o) \ {time}.

— the set of non-jumping discrete variabledds, J,
— the set of jumping discrete variablessN J.

e The predefined (non-jumping) variable denoting the curtiems istime.

A x process(p, o, E) is consistent if valuatiow is consistent withp in environmentE. In
timed x, there are two process terms which can introduce incomnsigte the inconsistent
process terml that is inconsistent with all valuations, and the signalssion operatou ~ p
that is inconsistent with all valuations in which predicatdoes not hold. Iry, only consistent
processes can perform action or delay transitions, ancethdtrof an action or delay transition
is always a consistent process.

2.2 Processterms

Process termP (without Py, see the table below) are the ‘core’ elements ofgthanguage. In
Section2.3, the syntax ofy process terms is extended with process teBysto ensure better
readability ofy models. The semantics of those process terms is definedis trthe core
process terms given in this section.
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P:= W:r>»Il, | § | L

| [Pl | u~nP | P;P | b>P | P[P

| PIP | hiley | h?%, | da(P) | vn(P)
[ X | llvor 'PI | IwH''PT | [IrRRI'P]
|

Pext

An informal, concise explanation of the core syntax, togethith some additional (informal)
definitions, is given below. Chapt8rgives a more detailed account of the meaning. The core
operators are listed in descending order of their bindirength as followg~, — },; , {ll, [I}.

The operators inside the braces have equal binding strergthddition, operators of equal
binding strength associate to the right, and parenthesgdmased to group expressions. For
example,p; q; r meansp; (q; r).

Strictly speaking, g process ternp cannot perform actions nor delays. Only thgrocess
(p, o, E), that is obtained by adding a valuation and an environmerg, tcan, in principle,
perform actions and delays. Therefore, when we informaferrto a process term that per-
forms actions or delays, we actually refer to the process tegether with a valuation and
environment.

2.2.1 Action predicates

An instantaneous change of variablesyins always connected to the execution of an action.
In action predicates, the action is represented by a labd¢herQypes of action are related
to communication, which is treated below in the paragraplpanmllelism. Action predicate
W :r > |, denotes instantaneous changes to the variables froklV sby means of an action
labeledl,, such that predicate is satisfied. The predefined global variabime cannot be
assigned. The action lablglis taken from a given sedape Which at least contains the special
action labelr representing the internal or silent step. The non-jumpiagables that are not
mentioned inW remain unchanged, and the jumping variables may obtaitramnpivalues.

In this report, we do not explicitly give a syntax for suchgioatesr. Inr, variables and™
superscripted variables may occur. Of course the use ddbles is restricted to the declared
variables. A <’ superscripted occurrence of a variable refers to the valike variable in the
valuation prior to execution of the action predicate, andamal un-superscripted occurrence
of a variable refers to the value of that variable in the viaturathat results from the execution
of the action predicate. A predicateis satisfied if evaluating the* superscripted variables
in the original valuation and evaluating the normal ocawees of the variables in the obtained
valuation means that the predicate is true. Note that it ethdocase that different instantaneous
changes satisfy the predicate, this may result in non-ahétésm.

Note that the (multi-)assignment is not a primitivejnas for example ing]. This is because
action predicates are more expressive than assignmen@asssignment can be expressed as an
action predicate (see Secti@.2, but not the other way around. Consider for example the
action predicatgx} : x € [0, 1] > 7 that changes the value »fto a value in the intervdl0, 1],
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such as used in the example model in ChapteXlso, the predicate of an action predicate may
consist of a conjunction of implicit equations, e{g} : f1 (X", X) =0A... A fa(X",X) =0> 1.
The solution of such a system of equations, if present, net@lways be expressible in an
explicit form. The system may also have multiple solutions.

Deadlock and inconsistency

In x, only consistent processes can perform action or delagitiams, and the result of an
action or delay transition is always a consistent processneSprocess terms are consistent
for certain valuations and inconsistent for other valusioE.g. the signhal emission process
termx > 0 ~ p is consistent for the valuations in which the valuexak greater or equal to
zero, and inconsistent for all other valuations. Incoesisprocess terni is inconsistent for
all valuations, and it cannot perform any transition. Pssderm.L originates from the process
algebra with propositional signals AGR[1]). The deadlock process terncannot perform
actions or delays. It is however consistent with arbitraajuations. Both process terms are
needed for the specification of properties only.

2.2.2 Delay enabling operator

By means of thelelay enabling operatofp], delay behavior of arbitrary duration can be spec-
ified. The resulting behavior is such that arbitrary delaygsallowed. As a consequence, any
delay behavior op is neglected. The action behavior pfemains unchanged.

2.2.3 Signal emission

Signal emission operator i p, whereu denotes a predicate over variables, behavgs fas
those valuations whene holds. The process term is inconsistent with valuationsaoich u
does not hold.

2.2.4 Sequential composition

Thesequential compositioaf process termg andq behaves as process tepruntil p termi-
nates, and then continues to behave as procesggterm

2.2.5 Conditional

Theguarded process term b> p can perform whatever actionscan perform under the con-
dition that the guard evaluates to true using the current valuation. All varialdes allowed
to occur inb. The guarded process term can delay according toder the condition that
for the intermediate valuations during the delay, the giendlds. The guarded process term
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can perform arbitrary delays under the condition that ferittiermediate valuations during the
delay, possibly excluding the first and last valuation, thardb does not hold.

2.2.6 Choice

Thealternative composition operatdgfallows a non-deterministic choice between different ac-
tions of a process. With respect to time behavior, the ppéits in the alternative composition
have to synchronize. This means that the trajectories ofahiables have to be agreed upon by
both participants. This means tHais a strong time-deterministic choice operator.

2.2.7 Parallelism

Parallelism can be specified by means of plagallel composition operatofl . Parallel pro-
cesses interact by means of shared variables or by meanadaifreypous point-to-point com-
munication/synchronization via a channel. Channels ametge as labels (identifiers). A set of
channel labeldd is assumed. The parallel compositipn| g synchronizes the time behavior
of p andq, interleaves the action behavior (including the instagtars changes of variables)
of p andq, and synchronizes matching send and receive actions. Tlohinization of time
behavior means that only the time behaviors that are alldwedoth p andq are allowed by
their parallel composition.

By means of thesend action H! g,, wheree, denotesey, ..., e, for n > 1, the values of
expressiongy, ..., €, (evaluated w.r.t. the current valuation) are sent via celmnForn = 0,
h!!'e, denotesh !! and nothing is sent via the channel. By means ofrdoeive action #?x,,
wherex, denotesy, ..., X, for n > 1, values forxy, ..., X, are received from channbl For

n = 0, h ??x, denotesh ??, and nothing is received via the channel. Communicationis
the sending of values by one parallel process over a chamaglather parallel process, where
the received values (if any) are stored in variables. In casealues are sent and received, we
refer to synchronization instead of communication. Foreamication, the acts of sending and
receiving (values) have to take place in different pargltecesses at the same moment in time.

In order to be able to model open systems (i.e. systems tteafdone with the environment),

it is necessary not to enforce communication over the eatertmannels of the model (e.g. the
channels that send or receive from the environment). Fonmamication over internal channels,
however, the communication of matching send and receiveresgtoften is not only an option,
but an obligation. In such models, the separate occurrehtteesend action and the receive
action over an internal channel is undesired. @heapsulation operatad 4, whereAd C A\ {1}

is a set of actionsA is the set of all possible actions ands the predefined internal action), is
introduced to block the actions from the sktlIn order to assure that for internal channels only
the synchronous execution of matching send and receivenactakes place, one can simply
put all send and receive actions via internal channels iis¢hd.

In principle the channels iy are non-urgent. This means that communication does not nec-
essarily take place as soon as possible. In order to desmigbeurgent channels, thegent
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communication operatovy (p), whereH C H is a set of channel labeld(is the set of all
possible channel labels), ensures thatan only delay in case no communication via a chan-
nel fromH is possible. Such urgent channels correspond to urgennelsdefined in some
versions of timed automata, such asr4AL [8].

2.2.8 Recursive definitions

Process term Xlenotes a recursion variable (identifier) that is defindukeiin the environment
of the process, or in a recursion scope operator process|term | P ]|, see below. Among
others, it is used to model repetition. Recursion variablean do whatever the process term of
its definition can do.

2.2.9 Hierarchical modeling

Thus far, it has been assumed that all variables that areedldo occur in g process term
are declared in the valuation. To support the hierarchicadeting of systems, it is convenient
to allow local declarations of variables. For this purpdbe,variable scope operatoprocess
term|y o, | p ] isintroduced, where, denotes a valuation of local discrete variables, where
values may be undefined J. The set of local discrete variables is d@m). It is allowed that
the local variables have been declared on a more global #xesdy. Any occurrence of a
variable from doni | ) in process ternp refers to the local variable and not to any more global
declaration of the same variable name.

For similar purposes, local channels can be declared by snefia channel scoperocess
term |y Ho | p 1, and local recursive definitions by means akaursion scopgrocess term

[r R| pll.- The channel scope process tdiHy | p ] is used to declare the channels from the
setHy € H to be local. Communication actions via those local chanasdsabstracted from
(replaced by internal action) and the separate send and receive actions via local clsannel
are blocked. The recursion scope process tfggR | p ]| is used to declare local recursion
definitions by means of the sBtC RS(see Sectio3.1for the definition ofRS.

2.3 Syntactic extensions

For many of the process terms and operators introducedeyefare is additional, more user-
friendly syntax available, the so-called syntactic exiims In this section, all of these syntactic
extensions are expressed in terms of the core syntax irteoldn the previous section.

2.3.1 Processes

A x model is of the following form:
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(discsy, ..., S
, chan hyq, ..., h
L
s X1I—> P, ..., Xr = Pr
Y
)
where
e S, ..., denote the discrete variables,
e h4, ..., h denote the channels,

e i denotes an initialization predicate that restricts thevadid values of the variables initially,
e Xy p1, ..., X; = P denote the recursion definitions,

e pis a process term defining the behavior of the model.

Besides the variables mentioned in the model defined abbeegxistence of the predefined
reserved global variabléme which denotes the current time, the value of which is idiial
zero, is assumed. This variable cannot be declared. It chnbenused in expressions in
process ternp.

The abovey model is an abbreviation for the set pfprocesses defined by:

( aAia(U{hl,._.’hl}(i Atime=0~ p)

» Ost
, (0
AXe = P X )
)
)s
namely for each valuatiosis;, with dom(og) = {sy, ..., &, time}, a separatg process. In the

Xx processAi; represents the internal send and receive actions via clsamne. ., h;.

As a shorthand, the keywortlsc is omitted when there are no discrete variable declargtions
and the keyworahan is omitted when there are no channel declarations. Alsaikialization
predicatei and the recursive definition$; — py, ..., X; — p;y may be omitted, indicating

a predicate that always holds and an empty list of recursmitions, respectively.

2.3.2 Process terms

The syntactic extensions for process terms are definedlaw ol



12 Chapter 2. Syntax and informal semantics of the timed Chyuage

= skip | Xpn:==€, | Xp:r | hle, | h?x,
| Aq(P) | Ad | *P | *b: P
| |[disc &, chan hy, i, Lr ‘|'P ]|
[ Tp(Xk, hm, €n)

The operators oP and P are listed in descending order of their binding strengthodieviis
ek, = 4 Al I

Skip

Process term skip is an abbreviation for an action preditetecan only perform an internal
action () without changing the valuation.

A

skip = @:truext

Multi-assignment

Multi-assignmentx,, := €, for n > 1 is an abbreviation for an internal action that changes
variablesxy, ..., X, to the values of expressioms, ..., €,, respectively. Fon = 1, this gives
a normal assignment .= e.

Xn =€ = {Xn}:X1=€ A---AXg=€ >T

Heree™ denotes the result of replacing all variableis e by their =’ superscripted version™.
For example, the translation of process tetm= 2x + yzis defined agx} : x =2x~ +y z~,
and the translation of, y := x+y,x —yisdefined agx, y} : X =X"+ Yy )A(Yy=X"—y").

Action predicate

Action predicatex, : r denotes instantaneous changes to the variaggles. , x,, by means of
an internal actiorr, such that predicateover variables, dotted variables, and superscripted
variables is satisfied.

Xn:f 2 {Xg):r>71
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Delayable send and receive

Process termb ! g,, andh ?x, are the respective delayable equivalent$ dfe, andh ??x,.
They are defined by means of the delay enabling opefglomwhich adds arbitrary delay be-
havior top.

hle, £ [h!ley]
h?x, £ [h??X.]

Delay operators

By means of the delay operatdy (p), a process term is forced to delay for the amount of time
units specified by the value of numerical expressipand then proceeds @s The abbreviation
Ad denotes a process term that first delaysdftime units, and then terminates by means of an
internal actione.

Ag(p) £ lvit— L} | t=time+d~time>t— p]
Ad £ Aq(skip)

In the definition ofA4(p), t denotes a fresh variable, not occurring fregoinDelays are only
defined for non-negative values @f Therefore, we assume that the valualah the valuation
iS non-negative.

Repetition operators

Process term p represents the infinite repetition of process tggnGuarded repetitiorb : p
can be interpreted as “whiledo p”.

*P £ [r{X+— p; X} | X]|
x0:p £ [r{X— b— skip; p; X []—-b— skip} | X ]

In the definition ofxp andxb : p, recursion variableX denotes a fresh recursion variable not
occurring free inp.

Scope operator

The modeling scope operator process term
[ disc s, chan hy, i, LR ‘I'p ]

is used to declare a scope consisting of local discrete blaga,, ..., s, local channels
hi, ..., hy, initialization predicaté, and local recursion definition lidtg. The variables all
have to be different.
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[ disc s¢ o
, chanh Vs
e | Mahe.ohm)
L = | v (R{LRN 1T~ P
s R
I

| p 1

I
HereL r denotes the recursion definitioXs — p1, ..., X; — pr, os denotes a valuation with
dom(os) = {s1, . .., &}, andos is undefined for all elements from its domaWcqomo,) 0s(v) =

L.

In a similar way as defined foy processes, the keywortlsc is omitted when there are no
discrete variable declarations, and the keywsrgh is omitted when there are no local channel
declarations. Also the initialization predicatend the recursion definitions may be omitted,
indicating a predicate that always holds and an empty listcfirsion definitions, respectively.

Process instantiation

Process instantiation process tdptxy, hm, €,), wherel, denotes a process label, enables (re)-
use of a process definition. A process definition is specifreakpbut the associated processes
can be instantiated many times, possibly with differenapweters: external variablag, exter-

nal channel$,, and expressions,.

Chi specifications in which process instantiatidp&, hm, €,) are used have the following
structure:

pd;
pd,
(disc ..., chan ..., i, Lr| p),

where for each process instantiatig(xy, hm, €,) occurring inp, a matching process definition
of the form

lp(ext X', chan W'y, val vy) =
[ disc zg, chanh’py, i, X —>p
| Poody

]

must be present among theprocess definitiongd, ... pd;,. Herel, denotes a process label,
Xk denotes the ‘actual external’ variabbes . . ., X«, h,, denotes the ‘actual external’ channels
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hy, ..., hn, € denotes the expressions, ..., €,, X'k denotes the ‘formal external’ variables
X1s -5 X ' denotes the ‘formal external’ channdd$, ..., hy, v, denotes the ‘value pa-
rameters’vy, ..., vy, h"y denotes the local channets, ..., h' , i denotes the initialization

predicate, anX +— p denotes the recursion definitiodg — py, ..., X; = pr. Inasimilar
way, zq denotes a comma separated list of local discrete variables.

In process ternpyogy, apart from the local variable and local channels”y, also the formal
external variableg’y, formal external channels,, and value parametevg may be used. We
assume that the formal external variabtgs the value parametexs, the local variablegy and

the recursion variableX are all different. In the same way, the formal external cleésin’,
must be different from the local channéls,,. Furthermore, all variables and channels used in
Poody Must be declared.

Formally, the syntactic translation of process instaittimt
with corresponding process definition

lp(ext X'k, chan W'y, val vpy) =
[ disc z4, chan h”y

, i

, X—=>p

| pbody

I
is given by

[ disc z4, Vn, chan h”,y
LA (Vg = w)

, X—=>p

| pbody

I [Xks hm, €1/X'x, W', w].

This notation denotes the substitution of variablgsby xx, of channelsh’y, by hy,, and of
variablew by expressiom,. The substitution takes place on the initialization pratht A (v, =
w), on the recursion definitions — p and on the process terpaody.

The variablew is assumed to be fresh with respectx{o v, z4. The substitution is defined
in such a way that no variables frorm or €,, and no channels frorh,, become bound. If
substitution would cause new bindings, the local varialsléoocal channel that a variable or
channel fromxy, €,, or h,, would become bound to, is renamed into a fresh variable shfre
channel before the substitution takes place.

The translation declares the value parametgras local discrete variables with initial values
e,. By convention, however, process tepi,q, Nnormally does not change the values of these
variables.
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2.4 Datatypes

The x language is statically strongly typed. Besides the clasdifin of variables as defined
before, all variables have a type. The type of a variable defihe allowed values of the variable
and the allowed operations on the variable. The atomic tgpesat (natural numbers, including
zero), int (integers), real (real-valued numbers), boalo{bans), string (strings), and enum
(enumerations). Type constructors operate on existingstyp create structured types. The
language defines type constructors to create sets, listy, @ples, record tuples, dictionaries,
functions, and distributions (for stochastic models). @tes also have a type that indicates the
type of data that is communicated via the channel. Pure sgnidation channels, that do not
communicate data, are of the predefined type void.  hge system is strictly enforced in the
x tools. However, since the type system is not formalized, d@ritted from the specifications
in this report.



Chapter 3

Semantics of the timed Chi language

This chapter presents the structured operational sersg®{@S 6]) of timed x. It associates

a hybrid transition systent] with a x process. The semantics is defined only for a subset of
the syntactically alloweg processes. E.g. the semantics of therocesgx > 1 — p, o, E) is
defined only for variableg that have a defined value. These additional semanticaiatéstis

on x processes, if present, are specified together with the SI@$ far each process term in
Sections3.3and3.4.

3.1 General description of the SOS

The main purpose of an SOS is to define the behavior of hybpdocesses at a certain chosen
level of abstraction. The meaning ofyaprocess depends on the values of the variables and
on the environment. A séf of variables, and a sétl of channel labels are assumed. The
values of the variables at a specific moment in time are cegthy means of a valuation, i.e.,

a partial function from the variables to the set of valdegcontaining at least the booleals

and the real®). The set of all valuations is denotélt X =V +— A, and we assume € *
andtime € dom(o) for all x processesp, o, E). The setT is used to represent points in
time; usuallyT = R.o. The set of environment&Sis defined aES= P(V) x RS where
RS= XS+ P denotes the set of all partial functions of recursion vdeai{Sto process terms

P.

The SOS is chosen to represent the following:

1. Discrete behavior by means of action transitions:

@_-. > _C(PxIZIxE9x (X xAxX x(PxXxES, whereA denotes the set
of actions, and is defined @ = Aizpel U Acom. The set of action labeldy e includes
at least the pre-defined internal action The set of communication actio&.om is
defined asA.om = {isa(h, cs), ira(h, cs W), cah,cs) | h € H,cse A*, W C V},

17
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where isa, ira, and ca denote action labels for the intermadl siction, the internal
receive action, and the communication action respectivielty H denotes a channel,
cse A* denotes a lisfcy, ..., c,] of values andV denotes a set of variables. The

intuition of an action tran5|t|or(1p,a E) (p o', E') is that the proces®, o, E)
executes the discrete actiane A with valuationsé and&’ and thereby transforms
into the processp’, o', E’), wheres’ andE’ denote the accompanying valuation and
environment of the process tenpn respectively, after the discrete actiais executed.

(b) - > (\/,_,_)C(PXZXESX(ZXAX ¥) x (¥ x ES. The intuition of

a (termination) transitionp, o, E) - (v/, 0/, E) is that the process$p, o, E)
executes the discrete actiawith valuationst andé’ and thereby transforms into the
terminated process/, o', E').

2. Delay behavior (time-passing) by means of time transstia — _ C (P x X x ES x
(T x (T X)) x (P x X xES. The intuition of atime transitiofp, o, E) (p o', E")
is that during the time transition, the valuation at eacletipoints < [0, t] is given byp(s).
At the end-point, the resulting process (¥, o', E').

3. Consistency by means of a unary relation> C (P x X x ES x X. The intuition of a

consistency transitiofp, o, E) is that process term is consistent with valuatiog in
environmentE.

In this report, for all transitions, the domain of the valoato equals the domain of valuation
o', and environmenE equals environmeri’.

For all action tran5|t|on$p,a E) (/ o', E’Yy and(p, o, E) (p o', E"), dom(o) =
dom(c’), &€ =0, =o', andE = E'.

For all time transitiong p, o, E) (p, o', E"), dom(p) = [0, t], p(0) = o, p(t) = ¢/, and
E = E’. These properties of the semantics can be found in Chapter

The relations and predicates mentioned above are definmalgtiniso-called deduction rules. A
deduction rule is of the fornﬁ}, whereH is a number of hypotheses separated by commas and
r is the result of the rule. The result of a deduction rule caddrived if all of its hypotheses
are derived. In case the set of hypotheses is empty, the ti@dugle is called an axiom.

In order to increase the readability of thrededuction rules, some additional abbreviations

are used NotatiorE IF{(p, o) —> LN 2, (q, '), whereq € P U {V} is an abbreviation for
(p,o, E) (gq,0, E), notatlonEal, g a— I (g,0’)isan abbreviation fotp, o, E) LA
(g, ¢’, E), and notatiork I+ (p, o ) ~~ Is an abbreviation fo{p, o, E)

NotationE IF fq, ..., f,, wheref; represents one of the previously defined transition reiatio

(of the forms(p, o) sady (g, 0’y or (p, o) LA (g, 0’y or (p, o) 3») is an abbreviation for
EIFf,...,EIF f,.
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Notation
&1,a1,61 <Q11 > &m,am.&m fima
E'IF(p1,01) —— L0 )see oy (PmsOm) —— :o,oh),. C
Qin Omn
S
E|Hr,a>ﬂ>< : ,a/>

S

whereq;;, s € PU{v}, pi,r € P, andC denotes an optional hypothesis that must be satisfied
in the deduction rule, is an abbreviation for the followinges (one for each):

, S sa .f/ , Em,am,gr,n /
E"I- (pl’ Ul) ﬁ) (qliv al)v R (pm» 0m> - (qmi’ O-m>’ C

E o) 225 (s, 07

The notation%, whereR is a number of results separated by commas, is an abbreviati@a
set of deduction rules of the for%; one for each € R, and notatiorE % is an abbreviation

EIFH
for Fr-

. h, cathcs ¢
Furthermore, notationp, o, E) “*%” denotes(; cs¢.po.&r (P. 0, E) Leaho9f,

&,cah,cs), &’
A (BecseorE (P, 0, BE)
g.at

abbreviation for(p, o, E) — (p’, o/, E’) for some¢, a, and¢’.

(p’,o’', E))
(v, o’, E')), and notation(p, o, E) = (p/, o’, E') is an

3.2 Notations and mathematical definitions

Notationsf € M — G andg € M — G define complete functiori, dom(f) = M, and partial
functiong, dom(g) € M, both with rangeG.

3.2.1 Operators on functions

Based on 9], the following definitions of operators U, and| applied on functions are used.
If fisafunction, domf) and rangéf) denote the domain and range fofrespectively. IfSis
aset,f | Sdenotes the restriction df to S, that is, the functiorg with dom(g) = dom(f) N S,
such thag(c) = f(c) for eachc € dom(g).

If f andg are functions with dorff ) " dom(g) = @, then f U g denotes the unique functidn
with dom(h) = dom( f) U dom(g) satisfying the condition: for eaahe dom(h), if c € dom( f)
thenh(c) = f(c), andh(c) = g(c) otherwise.

If f is a function whose range is a set of functions & a set, thenf | S denotes the
function g with dom(g) = dom( f) such thatg(c) = f(c) | Sfor eachc € dom(g). If f is
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a function whose range is a set of functions, all of which haymrticular elemerd in their
domain, thenf | d denotes the functiog with dom(g) = dom( f) such thatg(c) = f (c)(d)
for eachc € dom(g).

3.2.2 Notations

Letx € V be a variableS C V be a set of variables; € X be a valuationg be an expression
over variables and constants, danelT be a time-point, then the following notations are defined:

e o (X) denotes the value of variablein valuationo. We use the similar notatiom(e). to
denote the value of expressierior valuationo .

FunctionE € ¥ x P(V) — P(2) returns a set of valuations, given a valuation, and the set
of jumping variables. Formally, functioB is defined as:

(0,3) ={o" | dom(c") = dom(o), ¥xedomoy 3 0'(X) = o (X)}.

(1]

The domain of the valuations is given by d@m. The values of the variables in dge \ J
are given bys. The jumping variableg are allowed to change arbitrarily.

FunctionQ € ¥ x T — P(T — X) returns a set of trajectories for the model variables,
given a valuation and the duration of the time transition. tFe 0, the set contains exactly
one trajectory. For < 0, the set is empty. Formally, functigm is defined as:

Qo,t) =

{p

| p €[0,t] — (dom(c) — A)

,t>0

, Vx e dom(o) \ {time} : p | X is a constant function.
, VX € dom(o) : (p 1 X)(0) =0 (X)
,Vse[0,t]: p(S)(time) = o (time) 4+ S

}

In some SOS rules describing delay behavio(g, t) is used as a hypothesis. It does not
restrictt and the trajectory other than by means of the default restrictions. Among sther
the discrete variables remain constant, and the duratiointhe time transition must be
positive or zero.
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3.3 Deduction rules for atomic process terms

3.3.1 Action predicate

Action predicate process tertlv : r > |, denotes instantaneous changes to the variables from
setW C dom(o) \ {time}, by means of an action labeléde Ane, Such that predicate over
variables from dortv ~) and donic’) is satisfied, see Rulk

Variables occurring with a™ superscript inr are evaluated i —, which denotes a valuation
with dom(c ™) = {x~ | Xx € dom(o)}, ando ~(X~) = o (X). For valuations’, the values of the
non-jumping variables (dofm) \ (J U W)) are given bys. The jumping variabled and the
variables from se¥V are allowed to change such that the action predicate idiedtis

Rule 2 states that action predicates are consistent with anytiahsa in any environmentk.

"e B(o, JUW), o~ Uc’ =7
o (o ), o o E= T1

o, la, o/

JRIFW:r>l;o) —— (V,0')

T-2

ElF(W:r>l,o) -~

3.3.2 Send and receive

Send and receive process terms e, andh ??x, denote undelayable sending of expression
e, via channelh, and undelayable receiving of information via chanhehto variable(s)x,
respectively.

The values of expressioms, . . ., €, which are sent via channblare evaluated in valuation,
see Rule3, whereg, denotesey, ..., &, [o(&,)] denotes the list of valugs (&), ..., o(e))]
for n > 1, ando (e) denotes the value of expressiefor valuationo. The case that equals 0,
represents the case where nothing is sent via the chaniedy @amd [0 (e9)] denote an empty
expression and an empty list, respectively. Ror 1, the receive process ted??xy, ..., X,
can receive the list of valudsg, . . ., ¢,], see Rulet, wherex,, denotesq, ..., Xn, {Xn} denotes
the set{Xy, ..., Xn} ({Xn} € dom(o) \ {time}), [cn] denotes the list of valuds,, ..., ¢,], and
o’(Xn) = C, is an abbreviation fos'(X1) = ¢4, ..., o’'(X,) = ¢,. We assume that all variables
in X, are different:x; = x; = i = j. Forn = 0, nothing is received, so thag andc, are
empty, ands’(Xo) = Cp always holds. Furthermore, we assufrg} € dom(o) \ {time}. Rules
5 and6 state that the send and receive process terms are consviiteany valuationo in any
environmentE.

o' € E(o,J)

(J,R) IF (hiley, o) = isa(h, [0 (en)]), o’

T3
(v',o")
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OJ [S E<Ga JU {Xn})a O'/(Xn) = Cn

(3, R) IF (h??X,, o) = ira(h. [cn. {Xn)), o’

(v,o')

_T5 _T-6
El-(h!le,, o) % E I (h??%,, o) %

3.3.3 Consistent deadlock

Process termd cannot perform any action transition, nor time transititiris, however, consis-
tent with any valuatiorr in any environmentk.

— 17
ElF (5, 0) %

3.3.4 Inconsistent process term

Inconsistent process terrth is considered to be in an inconsistent state from its staite L
process ternd, process termL cannot perform any action transitions, nor time transgion
Process ternmi originates from the process algebra with propositionataig) ACRs ([1]).

3.4 Deduction rules for operators

3.4.1 Delay enabling operator

By means of the delay enabling operalpt, time transitions of arbitrary duration are allowed
for the behavior ofp (see Rule). Time transitions ofp itself are ignored. The delay enabling
operator does not affect the action behaviompadfsee RuleB). Process ternfip] is consistent
with any valuatiory in any environmeng (see Rul€el0).

(p,o) 5 )
P p€Qo,t)
E — T8 E = T-9
(Ipl, o) — (p,,a’) ([pl, o) —> ([pl, p(1))

—  _T10
E I ([pl, o) %
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3.4.2 Signal emission operator

The signal emission operataor ~ p ensures thap starts its behavior from a valuatianin

which predicateu is satisfied. This operator was inspired by the signal eorissperator from
the process algebra with propositional signals pq®], which was also used ir8]. Rule 13

states that the signal emission operator restricts cemsigtof process terra ~ p to those
valuationst that satisfy predicata in environmentE.

gat v
, o) —> Iz o . u s , 12
P T e Y e o) O
e p.o) S5 (o) (U p.o) S (pl o)

£
(p.o) . £ U

(UA po) -~

E 3

3.4.3 Sequential composition operator
The sequential composition of process termandq behaves as process teqmuntil p ter-

minates, and then continues to behave as processqenihen p terminates, its right-hand
valuation&’ must be consistent with (see Rul€el4).

£.ag g’

E (pva>—)<‘/’aal>’ <q70—>WT_14 E <p70>:><p»0> T‘15
(p: q,0) 225 (g, o) (p; 0,0) > (P'; 0, 0")
Lo ;o «i
£ <p,o>+t—p><p,a> T16 E _\P-9) T
(p; 9,0) —> (p'; 4,0") (p; ,0) ~

3.4.4 Guard operator

The guarded process tettm— p can perform whatever actiorscan perform under the con-
dition that the guard evaluates to true using valuagofwe assumeb to be defined ir¢ in

Rule 18). Evaluating the guard i& ensures that when guard operators are nested with signal
emission operators, actions can be executed only if alltechjiredicates and all guards hold,
independently of the order.

The guarded process term can delay accordinguader the condition that for all intermediate
valuations the guard evaluates to trive(o.t; (S) = b).
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The guarded process term can perform arbitrary delays wuhderondition that for the inter-

mediate valuations, possibly excluding the first and lasiatéon, the guard does not hold (
Vseo.ry p(S) = —b). This ensures that, for example, the procéssisc x, x = 1 | time >

x — skip ) behaves as expected: it can first perform a time transitidh séich that the value

of the current timaime becomes 1, and thereafter it can perform action to the terminated

process. If the condition in Rul20 would beVsc o p(S) = —b, then a time transition of 1

would be impossible. This is because the value of the guandldhhen also be false for the last
time point of the time transition, so that the point wherevkie oftime equals 1 could not be

reached. The condition(0) = b = (p, o) pdlY (p’, o’y in Rule 20, which states thap must
be able to delay for a duration of O if the guard is initiallyegr ensures that undelayable actions

in p have priority over delay behavior of a guard that is initiagtlue and continues as false. The

conditionp(t) = b = (p, ps (1)) 2% in Rule 20 requires consistency if the guard holds in the

end-point of the trajectory. This ensures that it is impalssio delay to an inconsistent state.

Rule21and22 define thab — p is consistent withZ1) valuations for whictb holds and with
which p is consistent, and witl2@) valuations for whictb does not hold.

gat v
WJ%j+<W0%S#b

E T-18

b— p,o) 225

a’)

(P.0) F5 (P, 0"). Yscio p(S) =D

E
b— p.o) S (b— o)

19

peQ0.1), Yseon p(S) = —b,
0’0//
PO Eb= (p,o) 2 (.01
t) = b o) Y
o _ PO ED= (P 20

(b— p.o) =5 (b — p. p(t))

¢
g (P.0) ’SI:bT-Zl oE—b T.22

b= p,o) ElF(b— p o)~

3.4.5 Alternative composition operator

Applying the alternative composition operator to processns p and g models a non-
deterministic choice betwegmandq for action transitions. Process teforcan perform action
transitions only if the initial valuatiog is consistent witlg, as specified in Rulg3.
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The passage of time by itself cannot result in making a ch(dee Rule24). This is called
strong time-determinism, as defined t¥]. Consider for example the process((h!; p [I
Al10; g) || r, 0, E) for somep,q,r € P,o € ¥ andE € ES The alternative composition
specifies a send process term with a time-out of 10 time ub#pending om, either the send
succeeds first, followed by, or the time-out succeeds first, followed tpyregardless of. This
is different from, for example, thg, process algebra&]. There,(h! [] (A10; Al), o) does not
make a choice after expiration af10.

Rule 25 states that an alternative composition is consistent withl@ation if both alternatives
are consistent with that valuation.

as v,
<p,a>ﬂ><p,,a>,<q,a>~i
E — — T-23
<p[lq,a>ﬁ><p,,o/>,<q[lp,a>ﬁ><p,,a’>

(o) =5 (P o), (q.0) =D (o)

E "
(plQ.o)— (P 10", 0")

T-24

(Do)~ , (q, o)

(p1g, o)~

E T-25

3.4.6 Parallel composition operator

The parallel composition of process termpsandq has as its behavior with respect to action
transitions the interleaving of the behaviorspéndq (see Rule27). Process ternp can only
perform action transitions from a valuatigrwhich is consistent witly. Furthermoreq must
be consistent with the resulting valuatiéh(see Rule7).

The parallel composition allows the synchronization of chatg send and receive actions. A
send action isgd, cs) and a receive action itR’, cs, W) match iffh = h’ andcs = cs; i.e. the
channels used for sending and receiving are the same, anthalsalues sent and the values
received are identical. Furthermore, the resulting vadnatt’ ando’ of both the send action
and the receive action have to be the same. In order to be @béeeive values in variables
of the same scope as the send process term, the variablesatf thb value changes due to
the receive action are passed on to the send process term.isTdthieved by means of set
W on the receive action, and the addition of this #éto the set of jumping variables in the
environment where the send action takes place (seeZ®uld he result of the synchronization
is a communication action that is represented ki ces) as defined by Rulg6.
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The time transitions of the process terms that are put inlphtave to synchronize to obtain
the time transition (with the same time stepnd trajectoryp) of their parallel composition as
defined by Rule8.

A parallel composition of two process terms is consistet wivaluation if both process terms
are consistent with that valuation (see R28.
0/>

LT A

QUwW, R)|F(p,a)w><

~

NSNo

(J R) - (q G) & ira(h,csW),&’ <

Q\
q\
\/

°Q

TN

/\
= Qa

q\
~———

LRI (pllg.0) S22,

N

(@ p,o) S0 <

q

QT
q\
\/

ag v P

(@.0) 5, (p.o) 225 (50" Q. o) S

E T-27
ta¢ q , £.a¢ q

/’O-/>

(p.o) =5 (.0}, (q.0) —5 (g, o)

E o
(pllg,0) — (P I1q,07

T-28
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3.4.7 Action encapsulation operator

The behavior of the action encapsulation applied to a peotarsnd 4(p) is the same as the
behavior of its argument with the restriction that actiamsif the setd (A € A\ {t}) cannot be
executed (see Rul&0). Action encapsulation has no effect on time transitiors @mnsistency,
as defined by Rule31 and32.

(p, o) S35 <g,,a’>, ag A

E v T-30
£ ,

<8A(p)aa> — <8_A(p/)’o->

(Po) F>(Pio) L (po)

T-32
(04(P), o) 5 (94(P). o) (94(D), o) ~

E

3.4.8 Urgent communication operator

The urgent communication operatoy, (p) gives communication actions via channels from set
H C H a higher priority than time transitions. Action behaviodaionsistency are not affected
by the urgent communication operator, see R@@and35. Time transitions are allowed only

if at each intermediate state while delaying no commurocagictions via channels frof are
possible.

<p,a>i><p,,a’>
E T-33
.oy S (Yo
e v (p)’
(o) —5 (o),
s 0, t— 5, 0—s / / 3k
e Yaeo ((.0) B (P, 0a). (Pe.05) 57 (0 0"). Viere (Ps. 05 E) R

(U (P), o) =5 (up(P), o)

(p, o)

—  T-35
(Un(p), &) >

E

where p_g denotes the trajectory shifted left bys time-units and starting at 0: dam.g) =
[0,t —s], andVt’ € dom(p_s) : p_s(t’) = p(t’ +S), wheret denotes the end-point of the domain
of p: dom(p) = [0, t].
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3.4.9 Recursion variable

A recursion variable process tetbehaves as the process term giverRgx). HereR(X) is
the process term that is defined for recursion variabie function R. This is equivalent to syn-
tactically replacing recursion variabl by its defining process terirR(X). It is assumed that
X is defined in the environmenX € dom(R). FunctionR can be defined in the environment
of the x process directly, or by means of the recursion scope opesate Sectio3.4.12

« v
(R(X),0) = ( ,,0") T
(3. R) P 136 R <R(X)’G>t'p_><p’a>T-37
(X, o) & <é,0/> (X, 0) = (P, o)
£
(R (R0 1 a9
(X, 0) <

3.4.10 Variable scope operator

By means of the variable scope operator, local variablesrareduced in ay process. A
variable scope operator process term

lvoa, | PI.

that is used in an environme@l, R), with valuationo, and wheresy, denotes a local valuation
with domain{d}, andd denotes the local discrete variabths. . ., d¢, behaves ap after taking

the union of the local and global valuation. To ensure thlaloahl variables are fresh with
respect to the global variables, the local variables areréramed. Thud’, in the rules below,
denotes fresh variables, ..., d, with respect to dorw). The local variablesl, ..., di are
assumed to be all different. Notatigr{d’/d] denotes the process term that is obtained by
substitution of the variabled in p by d’. After execution of an action or a delay transition, the
local variables of the variable scope operator are renaraekl to their original names.

The local variables are invisible outside of the scope dperd his is done by means of data
abstraction. For action transitions, data abstractioegakace by restricting the valuations, and
the valuation of the resulting process, to the global véemband by keeping only the global
variables in the setV of the internal receive actions. For time transitions, dstatraction
takes place by restricting the trajectory to the globalatags. In this way, all changes to local
variables are removed.

Action transition abstraction functiohe ¥ x ¥ x Ax ¥ — ¥ x A x X is defined as follows.
For arbitrary receive actions ifa, cs W):

ko (&, ira(h, cs W), §") = &,, ira(h, cs W N dom(o)), &,
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and for all other actions:
K(T(Sa aa S/) = EO" av E(;a

where valuationg,, £, denotet | dom(o), &' | dom(o), respectively. Furthermore, in the rules
below, the following abbreviations are used: valuatdndenotess’ | dom(c), and trajectory
0o denotes | o.

Valuationoy, € {d} — (A U {Ll}) and valuatioroy € {d'} — A define the same values for
all (renamed) variables for whiaky, is defined. For the undefined variablessi), o has an
arbitrary value¥y v € dom(ay, ) : 0q4, (v) # L = oy (v[d'/d]) = 04, (v), wherev[d'/d] denotes
the renamed version of variable

(pld'/d], o U ag) <255 <;,,a’>
E ot T-39
(ivoa, | pl,o) &2

( v o)
v (o [ {d'DId/dT | prd/dr %

te
d/ d, U , /’ /
= _ tpld/dlo ad>»—>t<pp ) a0
(lvos, | pll.o) —>

(v (o” [ {d'Hld/d'] | p'[d/dT ]I, 0p)

: £
e (P/dho Voo o)
(vou. | pl,o) %

3.4.11 Channel scope operator

By means of the channel scope operator, local channels camtrbduced in ay process.
By means of action abstraction, communication actions oallohannels are made invisible
outside of the scope operator.

Action abstraction takes place by substituting commuidoaactions céh, cs) using a local
channel (1 € Hp) by internalt actions (see Ruld2). The internal send and receive actions
(isa(h, cg) and irah, cs W)) on a local channeh are blocked, because Ru€ only specifies
behavior for communication actions(tacs). Therefore, these internal send and receive actions
are not visible outside of the scope operator. Functioa ¢h— H U {1} extracts the channel
label from an action. Itis defined as(da(h, cs)) = h, ch(isa(h, cs)) = h, ch(ira(th, cs W)) = h,

and chly = L, wherel; € Aapel
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gcah,co.e’ Vv

<p70>—)<p/30/>’h€H0
E - T-42
£.1.8
H k) / k] !
(liHo | P1I a>—><|[HHO| 0] a’)
(p.o) S5 <g,,a/>, ch(a) ¢ Ho
E v T-43
£.a¢
H /
(l[H Olp]|’a>—)<|[HHO|p/]|’G>

(p.o) =5 (P, o)
t,p

(lhHo | pl,o) —> (i Ho | P 1. 07)

E T-44

(p. o) ~
&

(lhHo | P o)~

E T-45

3.4.12 Recursion scope operator

By means of the recursion scope operator, local recursidinitiens are introduced in &
process. The application of the recursion scope operatarpimcess ternp with a ‘global’
valuationo and a ‘global’ environmentJ, R) behaves agp after the addition of local recursion
definitions to the global recursion definitions. In the rudetow, X +— g denotes the recursion
definitions X, — q1, ..., X; — @. To prevent redefinition of recursion definitions already
existing in the environment, the local recursion varialaiesrenamed to fresh variables if they
are already defined in the environment. In faXt,= Xi (1 <i <r)if X; ¢ dom(R) and X{
denotes a fresh variable with respect to d&nif X; € dom(R). Notationp[X’/X] denotes the
process term that is obtained by substitution of the vag@Xlin p by X'.

v

(J. RU{X" > g[X'/X]}) IF (p[X'/X], o) = (p/’0/>
% T-46
QR URX = a1 Pl () oo o)
’ ’ ’ t.o ;o
(J, RU{X" = q[X'/X]}) H_t,i;p[X/X]’aw—)m’U)’ T.47

J,RIF(r{X—a} [ pl,o) — ([r{X—a} | P'[X/XT]]],0")
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(3. RU (X' = gIX'/XI) I (pIX'/X], o) &

g T-48
(R IF([r{X—a} | pl,o)~

Consider, for example, the process tefmX — Y, Y > X =0 | [rY = x:=1| X ]].
Local recursion variabl&y with definition Y — x := 1 conflicts with the recursion variable
definitionY — x := 0 from the outer scope. The renaming of the local variabléénrtles of
the recursion scope operator ensures that the processébands agg X — Y, Y > X :=0 |
[RZ+ x:=1] X1]]. Thus, the value of variable becomes 0. The renaming also ensures
that the use of repetitiorp and guarded repetitiogb : p, which are defined in Sectidh 3.2
as|r{X— p; X} | X] and|[r{X — b — skip; p; X []—=b — skip} | X ]|, respectively,
cannot override existing recursion definitions using theesaecursion variablX.
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Chapter 4

Discrete-event model of a
manufacturing line

A manufacturing line consists of a genera@®y distributerD, two manufacturing cell€, and
an assembling machingl,. Figure 4.1 shows the iconic model of the manufacturing line.
Processe® andE are added to obtain a closed system; they do not model actbal/tor.

Figure 4.1: Iconic model of a manufacturing line.

The manufacturing line is modeled as follows, Whe&&, tout, Ptyins Ptmaxs Plminz Ptmaxa
Ptrings Plnaxs Plming Pthaxe @ndpt denote constants.

( G(gd. tgen)

|| D(gd, dc;, dc,, dr, tou)

I R(dr)

[ C(dcl’ Cimy, ptminl’ ptmaxl’ N1, ptmin2» ptmaxz)
[ C(dcy, cnm, Ptming: Plmaxs Na, Plmings ptmax4)
| Ma(cmy, crp, me pt)

33
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I E(me
)

G(chan gd, val tgen) = [[ disc X, X = false| *(Atgen; gd!X) ]|

D(chan gd, dc;, dc,, dr, val toy) =

[ disc x

| (gd?x; (dcp !X [[de ! X [] Atgye; dr!X))
1

R(chan dr) = [ disc X | *(dr ?x) ]|

Ma (chan cnmy, cnp, me val pt) =

[ disc X, y

| +((cmy ?X || cmp ?y); Apt; me!x)
I

E(chan me = |[ disc X | *(me?X) ||

Everytgen time units (assumingyen > tou, S€€ procesd), a product is generated by generator
G. A product is modeled by a boolean variabl¢hat is initially false. The boolean indicates
whether the product has done the second round in a manufactll C. A product enters the
manufacturing line via channgtl. The distributor tries to send a product either via chadoegl

or channeldc, . In case this is not possible withtg, time units, the product is rejected and
sent to reject procedR via channelr (dc; ! X [[dG, ! X [] Atgyt; dr!x). Processk consumes the
rejected products«(dr ?x)).

A manufacturing celC, shown in Figurel.2, consists of two machinedA,,, M) and aN-place
FIFO (first-in-first-out) bufferB.

in mb e bm “ out

mm

Figure 4.2: Iconic model of a manufacturing c€ll

The x specification of the manufacturing cell is as follows:

C(chan in, out, val pPtying, Ptiaxs, N, Ptying, Ptnax?
[ chan mb, bm, mm
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| Mrw(ina mb7 mm ptminl’ ptmax:l)
| B(mh bm, N)

|| M (bm OUL mm ptminZ» ptmaxz)
1

Products enter the cell via chanriel The routing of a product in the manufacturing cell is as
follows: My, B, M, M., B, M. Products leave the manufacturing cell via charmél The
process definitions of the buffer and the machines are giyen b

B(chan in, out, val N) =

[ disc X

, Xs=1[]

| *( len(xs) < N — in?X; XS:= XS+H-[X]
[len(xs) > 0 — out!hd(x9); xs:= tl(x9)
)

1

My (chan in, out, mm val ptyin, Pthax) =

[ disc x, pt

| *((iN?X [ mm?X; X :=true); pt: pt € [Ptmin, Ptmax]; Apt; out! x)
I

M (chan in, out, mm val ptmin, Ptmax) =

[ disc x, pt

| #(IN?x; pt: pt € [Plnin, Pmax]; APt (X — out! X [] =X — mm! X))
I

The buffer can store up td products, which are stored in a lis(len(xs) < N — in?x; xs:=
xs-+H-[x]), where[x] denotes a list with one elemextand-+ denotes list concatenation. The
empty list is denoted by]. If the buffer is not empty, the first product in the buffer dansent

to the machine via channelt (len(xs) > 0 — out! hd(xs); xs:= tl(xs)), where hdxs) denotes
the first element (head) of ligs, and tlxs) denotes the remainder (tail) of lisswithout its first
element. MachinéVl,,, receives products from channéfsandmm A product received from
mmis assigned the value true, which indicates that this produgrocessed by machind,,,

for the second timeirf ?x [ mm?Xx; X := true). The machine has a processing time between
Ptmin andptmax time units pt : pt € [ptmin, Ptmax]; Apt). Processed products are sent via channel
outto the bufferB. MachineM receives products via channe| and processes them fotrtime
units. Depending on the value of product variak)eéhe product is sent either via chanmein

to machineM,,, (x equals false) or it leaves the manufacturing cell via cheooe(x equals
true) k — out!x [ =X — mm! x).

After processing in one of the two manufacturing céllsproducts are sent to machimé,.
Machine M, waits to receive one product via chanwat,, and one product via channefr,
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in a non-deterministic orderciy, ?x || cnp ?Yy). After processing these two product&pt),
the combination of them leaves the manufacturing line viancelout (out! x). ProcessE
consumes the processed products.



Chapter 5

Translating timed automata to timed
Chi

In this chapter, the timed automata model is translateddaithedy formalism.

5.1 Definition of a timed automaton

A timed automaton (based of1]) consists of the following components:

¢ A finite set of (real-valued) clockX = {xq, ..., Xn}, and a finite se¥ = {yi, ..., Y} Of
variables.

¢ A finite directed multi-graph(V, E), whereV denotes a set of vertices (locations / control
modes) ancE denotes a set of edges (control switches). Verteg V denotes the initial
location.

e A vertex labeling function inv that assigns an invariant &zte locationv € V, and a ver-
tex labeling function init that assigns an initializationegicate to the initial locatiomy.
Invariants and initialization predicates are predicates variables and clocks.

e Three edge labeling functions guard, reset, and assigra#isign to each edgee E, a
guard, clock resets, and assignments to variables, réggdgciGuards are predicates over
variables and clocks, and clock resets are of the form 0, wherex denotes a clock.

o Afinite setX of events, and an edge labeling function everlf — X that assigns an event
to each edge € E.

37
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5.2 General translation scheme

Consider a timed automaton withclock variables X = {x4, ..., Xn}), m discrete variables
(Y ={v1, ..., ¥m}), klocations ¥ = {vy, ..., v}), and initial locatiorw,, to be translated to a
correspondingy specification. The translation is defined as follows:

([rR{v1+ —(Zc(inv(vy))) — L
([]e:eeedgesvl)
[Zc(guarde)) — Ta(Zr(resete)), Tc(assigrie))) > evente)]; targete)
)

e ~(Telinv(u)) — L
(De:eeedgesvk)
[Zc(guarde)) — Ta(Ir(resete)), 7c(assigrie))) > evente)]; targete)
)
}
| v
I
, R(init(vy)) U {time — 0}, (4, ®)
)

The delay behavior in a vertax is restricted by means of its invariant. This restrictiotréms-
lated to the process terrh, guarded with the negation of its invariant((Zc(inv(v;))) — L).
Function7c replaces all clock variables by expressionsime — x. E.g. invariantZc(x < 2)
becomesime — x < 2.

Each outgoing edge is translated to a process term of the[form W : r > I5; X]. In this
process term, the gualdis defined agc(guarde)).

The label of the action predicate is defined as e@ntand the predicate is defined as
Ta(Tr(resete)), Tc(assigrie))), where functiorZi replaces a clock resgt:= 0 by X := time,
and function7, combines clock resets and assignments into one actioncatediFor example
Ta(X ;= time, y := 2) becomegX, y} : X =time Ay = 2.

FunctionR translates an init predicaig = Co A - - - A X, = Cy to @ valuationXg — Cy, . . ., Xn >
Ch} . EQRX=1Ay=2)={X— 1,y 2}

In the translation scheme, thgrocess term cannot be used instead of the inconsisterggzoc
term L. Consider for instance a timed automaton with one clockatéeix, one locationug,
function init(vg) = (X = 0) and function inyvg) = (X < 1). This automaton can perform time
transitions with duratiort € [0, 1). Using the translation scheme, the followiggprocess is
obtained:({|[rvg — —(time —X < 1) — L | vg ], {X — O, time — 0}, (4, ¥)). Like the timed
automaton model, this process can perform time transitibmsirationt € [0, 1). Translating
the timed automaton model tp, usings instead of L, the following x process is obtained:
([Rvo > —(time — X < 1) — § | vg ], {X — 0, time — 0}, (4, ¥)). This process can perform
time transitions of duratioh € [0, 1], includingt = 1, and is therefore incorrect.
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5.3 Example: a coffee vendor machine

5.3.1 Timed automaton model of the coffee vendor machine

After receiving a coin, modeled by means of actimin in the timed automaton model of Figure
5.1, the coffee machine allows the user to push a button (attittor) within 5 time units. If
the user pushes the button within this time interval, thehimacproduces the coffee after 2 to
4 time units €offeg. Otherwise, the machine refunds aftet @ 1 time units efund).

X <5
button
Xx:=0

Figure 5.1: Timed automaton of the coffee vendor machine.

5.3.2 Ayx model of the coffee vendor machine

Translation of the timed automaton model of the coffee vemaachine described in the previ-
ous section results in the following timedspecification.
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([r{ s> —(true) — L

[l [true — {x} : X =time > coin]; S,

, S > (time—X <5 — L
[l [time — X < 5— {X} : X = time > button|; s3
[I[time =X =5— {X}: X =time> 1]; &4

, 3> —(time—xX<4) — 1
[ [time — X > 2 — @ : true > coffeqd; s

, e (time—x<1) —»> L
[ [time — X > 0.1 — @ : true>> refund]; s;

}
| s
1
, {time— 0, X — 0, (¥, V)

)



Chapter 6

Derivation of timed Chi from hybrid
Chi

In this chapter, the timegd language is derived from the hybridlanguage defined iri[7], such
that hybrid x is an operational conservative extension of timedThis derivation is divided
into two main steps: 1) the syntax of hybridis restricted (Sectiof.1), 2) the continuous and
algebraic variables are removed (SectioB).

6.1 Thecl,language

Let £o(C, L) be the hybridy language, wher€ andL denote the set of continuous variables
and the set of algebraic variables, respectively.

Restricting the syntax of théy language leads to thé; language. The syntactic restrictions
are listed below:
e remove delay predicaie
e remove jump enabling operatgy-,
e remove variable scope operatditsoqx, , {X}, {9} | p1l, where{x} # ¥ or {g} # @. Therefore,
the remaining variable scope operators infhdanguage are of the fortfy, o4y, , 9,9 | p1.

This results in the following syntax for the process tengmns P, of the £; language:

Pe,i= Wersly | 8 | L

| [Pl | unP | P;P | b=>P | P[P
| PP | hl'ley | h??, | 0a(P) | wvx(P)
|
|

X | vor,2,9°IP1 | lnH TP | [RRIP]

Peth 1

41
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= skip | Xpn: =€, | Xn:r | hle, | h?x,
| Aq(P) | Ad | *P | *b: P
| |[disc &, chan hy,,i,Lr ‘|'P ]|
[ 1Tp(Xk, hm, &)

The deduction system df;, denoted byD.,, consists of all deduction rules of the deduction
system ofLgq in which only syntax fromZ, is used, i.e., the deduction rules defining atomic
process terms and operators that are removed are omitted.

Lemmal Dy, C Dg,.

Proof. Trivial X

Lemma 2 If all syntax used in the conclusion of a deduction rule fBg), is contained inCq,
then all syntax used in the hypothesis of this rule is alsdatoad inL;.

Proof. Trivial X

Lemma 3 Let p and pbe closed process terms from,Po, o’ be valuations, £’ be extended
valuations,(C, J, L, R) and(C’, J’, L’, R") be environments, a be an actignpe a trajectory,
andte T. Then

’

§.a,

e

Lo(C,L) = (p,o,(C,J L, R
L1(C, L) E{(p,o,(C,IL,R
Lo(C, L) E(p,o,(C, I L, R
L1(C, L) =(p,o,(C,J L, R
(
(

|

(o', (C,J L, R))
256 (CL YL, R)),
Y (pL o', (CL I, L, R))
(p',o',(C',J,L',R)),

o

<]

iy

Lo(C, L) = (p.o.(C,J. L. R
L£1(C,L) = (p.o.(C,J,L,R

e TeTe I I
¢

’

gat
—_—

where (p, o, (C, J, L, R)) (., ¢/, (C', J, L', R)) is an abbreviation for
v

(p, o, (C. 3, L, Ry 225 ¢ /+0". (€. 3, L', R)) for some f

Proof. The proof for the three statements of the lemma are very aimifherefore, we only
consider the second statement. Proof of left implicatier):(We prove this lemma by induction
on the depth of the proof of a time transition derivedi(C, L) and use case distinction on
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the deduction rule applied last. If a time transition can beved fromD,,, there exists a
deduction rule fromD,, and a substitution such that this transition is obtainethfepplying
the substitution to the deduction rule. Using Leminghis deduction rule is also part &f.,.
By induction (Lemma guarantees that the substituted hypotheses ar&a(§h L)-terms) the
substituted hypotheses of the deduction rule are alsoat#enin Lo(C, L). Therefore, using
the same deduction rule and the same substitution, thetioansan be derived io(C, L) as
well.

Proof of right implication £): The proof follows the same lines with the additional obser
vation that due to Lemma3, a proof of a transition betweefi; (C, L)-terms will never use a
deduction rule that is not also containedlin, . X

6.2 TheL,language

The L, language is defined a&, = £1(9, ¥). The syntax of, remains unchanged w.rf£,.
The deduction system df, equals the deduction systeRy.,, where all occurrences & and

L are replaced by (this substitution is also applied to the functioRsand ). Furthermore,
mathematical equalities of the form def = dom(c) = &, = &, domEV) = 9 —

o U&Y = o are used. Some free variables are renamed to other fredlearifor a more
intuitive representation. After the substitution, all Bomments are of the forn@, J, @, R).
Since, there are no deduction rules which can modify the wisgts of the environment, this
information is redundant. Hence, the environment is sifigglito (J, R).

To illustrate howD,, is derived fromD,,, the derivation is shown below for functidi, func-
tion € and the deduction rule of the action transition of the acfiedicate inD.,. The other
derivations can be found in Appendix

Substitution[@, @/C, L] on function definitionz,

E(0,C,J,L) ={& | dom(&) =dom(o) UC UL, Yxedomoy s E(X) = o (X)}

results in the following definition:

B(o, J) = {o’ | dom(o’) = dom(0), ¥Yxedomo)3 o' (X) = o (X)},

usingC = § — C = ¢, and bound variabl¢ is substituted by bound variabt¢. The
signature of the function is simplified ® € (X x P(V)) — P(2).

All occurrences of functionf2 in the deduction rules db., are of the form2 (o, C, L, u, t) (or
in abbreviated notatiof,g;), whereu = true. Therefore, in the function definition fér true
can be substituted far.

Substitution[d, @, true/C, L, u] on function definitiore2,
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Q(,C,L,u,t) =

{p ,

| p €[0,t] = ((dom(c)UCUL) - A)

,t>0

,Vse [0, t]: p(S) =uU

,Vxe CUL: p | X is a bounded function that is absolutely

continuous except for a finite number of points
, Vx e dom(o) \ ({time}UC): p | X is aconstant function

,VxeC: o | X is an absolutely continuous function
, VX € dom(o) : (p 1 X)(0) =0 (x)
(0 4 x)(8) =(p | X0 + fos(p I X)(sHds
,Vse[0,t],xeC: o | x is differentiable ins =
(p 4 X)) = (§p L X))
,Vse[0,t]: p(S)(time) = o (time) + S

}

results in the following definition:

Qo,t) =

{p

| o €[0,t] = ((dom(o)) — A)

,t>0

, VX € dom(o) \ {time} : p | X is a constant function
, VX € dom(o) : (p 1 X)(0) =0(x)

,Vse [0, t]: p(S)(time) = o (time) + S

}

usingC = —> C = . The signature of the function is simplified@®e = x T — P(T
).

Substitution of@, #/C, L] on the deduction rule for the action transition of the acpoedicate,

E=0UECL & € BE(0,C,JUW, L), & UE =1

Sa |a, é’
— (V. &)

(Cv ‘]7 Lv R) H_ (W or >> Iava>
results in the following deduction rule:

c' € B0, JUW), 0~ Uo' T

o, la, o Ez'l
s las (\/,O'/>

(LRIFW:r>»l,0)

using donﬁéc'-) =0 = & =0,dom¢’) =dom(c) = &, =&, and free variable§’ and
&~ are substituted by’ ando —, respectively.
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Lemma 4 Let p and pbe closed process terms from,Po, o’ be valuations, £’ be extended
valuations, J and Jbe sets of jumping variables, R and Ise recursion definitions, a be an
action, p be a trajectory, and £ T. Then

L.0.0) = (Do, @ 3,0, R) 225 (o @, 3,0, R) <
L= (po, (3 R) Z2 (o) (3 R))

L., 0) = (p,o, (B, 3,0, R) -5 (p, o', (@, 3,4, R)) <
Ly (po,(3,R) > (p,o’, (3, R))

L.0,9) = (p, o, (@, 3,0, R)) ~ &
LoE (poo, (3 R) >,

where (p, o, @, J, 9, R)) 225

(p. o, @, 3,9, R)) 25 <g,,a/, @, 3, 9, R)) for some f and (p, o, (J, R)) <25

(., 0’,(J, R))is an abbreviation for p, o, (J, R)) ﬁ (;,,a’, (J’, R)) for some p.

(., o/, @, J, ¥, R)) is an abbreviation for

Proof. This proof follows the same lines as the proof of LemBaalhere are two important
differences. The first difference is that the deductionsweL, (4, ¥) and the deduction rules
of £, are syntactically different. Nevertheless, by constarctof the deduction system df,
there is a one-to-one mapping between these sets of deduglas that explains precisely how
the application of a deduction rules from one of these laggsaas to be mimicked by the
application of a deduction rule from the other language.

The second difference is that, due to the renaming of sonmables in the original deduction
rule, the substitutions that are used in deriving in the t@duttion systems are not identical
anymore. Again, by construction, i.e. using the matherahidentities as defined in this
section and in AppendiR, also here it is clear how a substitution used for derivingaadition

in £1(9, ¥) can be transformed into a substitution used for derivingstrae transition irC,,
and vice versa. X

6.3 RelatingLy(9, ¥) and L,
From Lemma3 and4 we obtain the following relation betweety (¥, ¥) and L5:

Corrolary 1 Let p and p be closed process terms frony,Po, o’ be valuations£, &’ be
extended valuations, J and Be sets of jumping variables, R and i recursion definitions,
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a be an actionp be a trajectory, and &€ T. Then

Lo@. ) E (p.o. @ .0, R)Z2E5 (o', 0,7, 0.R)) &
Lok (po, (3, R) 225 (Lo, (I, R))

Lo@.0) = (p.o. (B, 3.0, R) > (p, o', (@, 3.6, R)) &
Lo (po. (3, R) S (.o’ (. R))

Lo@. ) = (p.o. (. 3,0, R) < N
Lo (p.o, (3, R) 5,

where (p, o, (3, J, 3, R)) % (., o/, @, J, @, R)) is an abbreviation for

gat vV

(p,o,(®@,3,4,R) —> (p,,a/, @, J, 9, R)) for some p

6.4 RelatingL, and timed Chi

Let h be a bijective mapping that maps the process terms ofZthianguage to the process
terms of the timed, language. It is defined as

h(lvor, 4,0 "P 1) =llvor ‘I'h(P) 1,
and distributes over all other operators.

Lemma5 Let p and pbe closed process terms from thglanguageg, o/, &, &’ be valuations,
J and J be sets of jumping variables, R andb® recursion definitions, a be an actignbe a
trajectory, and te T. Then

Lo (po, (3 R) 225 (o) (3, R)) o
timed x = (h(p), o, (3, R)) 225 (o7, (3", R))
Ly (po,(3,R) 5 (P, o', (3, R)) N
timedx = (h(p),o,(J, R) LN (h(p), o', (J',R))
Lok (p.o, (3 R) N
timedx = (h(p), o, (J, R)) ~,
where (p, o, (3, R)) <25 ([ o/, (3, R)) is an abbreviation for(p, o, (J, R)) ~25
(g,,a’, (J', R)) for some p and (h(p), o, (J, R)) ﬁ (.,0’,(J, R)) is an abbreviation
for (h(p), o, (J, Ry) 25 <h£/p)’)’0/’ (J’, R)) for some p

Proof. Trivial X



Chapter 7

Validation of the semantics

First we consider the well-definedness of the semantics aid®e7.1 Then, in Sectiory.2,
some properties of the Chi semantics are given. In SedtiBna notion of equivalence is
defined, called stateless bisimilarity, which is similar to the well-known notion of bisimi-
larity [15, 10]. It is also shown that this relation is an equivalence andragouence for al
operators. Some useful properties of clogegrocess terms are given in Sectipd. Many of
these properties express intuitions about the meaningpgf tperators such as the commutativ-
ity and associativity of the alternative composition anglplarallel composition operator. Other
properties are introduced for the purpose of simplifyjngnodels. Both the examples treated
in the previous section and the properties treated in tluBaseadd to the level of confidence
one has with respect to the ‘correctness’ of the semantics.

7.1 Well-definedness of the semantics

In the term deduction system negative hypotheses are udedlé84 of the urgency commu-
nication operator. As a consequence it is not obvious atdiigbtt whether the term deduction
system defines a unique transition system for each closemggderm. Well-definedness of
the term deduction system can be obtained by providistyatification[2]. The mapping that
associates with every positive action transition and pesitonsistency predicate the value 0
and with every positive time transition the value 1, turnstolbe a stratification.

7.2 Properties of the semantics

In this section, some useful properties about the semaatigs are introduced that can be
applied in the remainder of the report (especially in theofs@f the properties in Sectioh4).

With the current set of deduction rules for the semanticg othe left-hand and right-hand
valuation are always the same as the initial and resultihgatian of an action transition, re-
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48 Chapter 7. Validation of the semantics

spectively. A similar reasoning applies to the first and ladtiation of a trajectory on a time
transition and the initial and resulting valuation, respety. Also note that the environment is
never changed in a transition, and that the valuation ondhsistency transition is the same as
the initial valuation.

The following lemma captures these facts.

Lemma 6 Let p and pbe closed process terms,o’, &, &’ be valuations, E and Boe envi-
ronments, a be an actiom, be a trajectory, and &€ T. Then

/

(p.o,E) 225 (o', E) = domo)=domo)AE =0 AE =0

AE = E/,
(p,0, E) =5 (p/,o",E') = dom(p) =[0,t] A p(0) = A p(t) =0
AE =F/,
(p,o, E) = t=o.
£at P . sgatg v,
where(p, o, E) — (_, ¢/, E’) is an abbreviation fofp, o, E) — { 0’ o', E’) for some
.
Proof. See Lemm&, Corollaryl, and [L7, Lemma 1]. X

If a x process can perform action or time transitions, the prosassnsistent.

Lemma 7 Let p and pbe closed process terms, o, &, £’ be valuations, E and Boe envi-
ronments, and a be an action. Then
(p.0.E) 225 = (p.o.E) %,

where(p, o, E) % is an abbreviation foBy /g (p, o, E) ﬁ (‘/,,a’, E’).

p

Proof. See Lemm&, Corollaryl, and [L7, Lemma 2]. X

Lemma 8 Let p and pbe closed process terms,andos’ be valuations, E and Ebe environ-
ments, te T, andp be a trajectory. Then,

(p,o, E) 5 = (p,o, E) 2,

where(p, o, E) = is an abbreviation foBy . (P, o, E) Lol E.
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Proof. See Lemm&, Corollaryl, and [L7, Lemma 3]. X

The following lemma shows that any variation in the set offimg variables in the environment
of a consistenj process has no effect on the consistency transition.

Lemma 9 Let p be a closed process term,¢ be a valuations, JW be sets of variables such
that J and WC dom(o) \ {time}, and R be a recursion definition. Then

(p,o, (L, R) % < (po, (JUW,R) <

Proof. See Lemm&, Corollaryl, and [L7, Lemma 4]. X

7.3 Stateless bisimilarity

Two closedy process terms are considered equivalent if they have the bahavior (in the
bisimulation sense) in case both are considered from the gaitral valuation of model vari-
ables and the same environment. We also assume that tla vaitiation contains at least the
free occurrences of variables in the two clogefrocess terms being equivalent.

Definition 1 (Stateless bisimilarity) A stateless bisimulation relation on closed process terms
is arelation RC P x P such thav(p, q) € R, the following holds:

1. Vo, E,€,a &, 0", E : (p, o, E) 225 (v, o', EY)

’

& (0.0.E) 225 (v, o' B,

2.VaE$a§’paE/-(p,aE) (paE)
=39 : (0,0, E) 225 (q, 0, E) A (P, q) € R

3. Vo,E,&,8 ¢, (7, a/ E’-(q,a E) (q o', E')
= 3p': (p.o. E) 225 (p, 0", ENV A (PLO) € R,

4. Vo,E,t,p, p, 0, E"(p,a E) % (p, o', E)
=39':(q.0.E) => (0. 0", E) A (P. Q) € R,

5. Vo, E,t,0,q,0/, E"(q,a E) (q o', E")
=3p : (p,o, E) — (p, 0", E) A(P.q) € R,
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6. Vo, E,&: (p, 0, E) ©& (0,0, E) .

Two closed process terms p and q are stateless bisimilagtddrby p é q, if there exists a
stateless bisimulation relation R such thigt ) € R.

Note that in the above definition of stateless bisimilarttysipossible that the left-hand and
right-hand valuation of model variables, as displayed oadion transition, are different from
the respective valuations of model variables of the stakerégerforming the action transition
and the state reached by performing the action transitiamilaly, the valuation of model
variables before and after a time transition can be diffefierm the initial and end-point of a
trajectory, respectively.

As a consequence of LemrBathe definition of stateless bisimilarity can be simplifiexhsid-
erably. Yet, with in mind future extensions of thelanguage, it might well be the case that
these properties of the semantics are lost. Since we woelgmpnot to redo all the coming
proofs (in such a future), this presentation was chosen.

Stateless bisimilarity is proved to be a congruence witheesto ally operators. As a conse-
guence, algebraic reasoning is facilitated, since it mnadd to replace equals by equals in any
context.

Theorem 1 (Congruence)Stateless bisimilarity is a congruence with respect toyatipera-
tors.

Proof. The deduction rules of the language, satisfy therocess-tyfformat of [12]. Therefore,
stateless bisimilarity is a congruence. X

The hybrid x language without continuous variables and algebraic bl$a denoted by
LoD, #) (see Chapteb), is an operational conservative extension of the timeldinguage,
i.e., for closed timed,-terms, any equality and only equalities that can be derindined x
can also be derived ifig (¥, 9).

Lemma 10 Let p and g be closed process terms from tijmed’hen

Lo@. B EhYpohl@ <« tmedykEp < q

Proof. This follows immediately from the definition df as described in Sectidh4, Lemma
5, Corollary 1, and the definitions ok> (see [L7]) and é (see DefinitionL). X
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7.4 Properties of the Chi operators

In this section, some properties of the operatorg diiat hold with respect to stateless bisim-
ilarity are discussed. Most of these correspond well with iatuitions, and hence this can
be considered as an additional validation of the semaniiégs.not our intention to provide a
complete list of such properties (complete in the senseetety equivalence between closed
process terms is derivable from those properties). For ithefe of the properties, we refer to
Lemmal0and the proofs of the corresponding propertieglin.

Proposition 1 (Signal emission operator)The following properties hold for all closed process
terms pe P and predicates J’:

true~ p < p
false~ p < 1
un U np < UAU)ADP

If a true predicate is emitted, the process term is simplgetesl. If falsity holds initially, the
process term is inconsistent. A concatenation of signaksions leads to a signal emission
with conjunction of predicates.

Proposition 2 (Alternative composition) The following properties hold for all closed process
terms pq,r € P:

plp « p
plq < qfllp
(plaplilr <= pO@r)

The alternative composition is idempotent, commutativéd associative. The property []
3 < pdoes not hold. Consider, for exampe= false— skip. Thenp [] § cannot perform any
time transitions, whilep can perform arbitrary time transitions. Propepyf] § <+ § does not
hold either. Consider, for example = skip. Thenp [] § can perform a transition, whiles
cannot.

Proposition 3 (Guard operator) The following properties hold for all closed process terms
p € P and guard b:

true— p < p
b—(pllg) < b—pllb—>gq

If a process term is guarded by a true predicate, the proegsdd simply executed. The guard
distributes over the alternative composition operator.
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Proposition 4 (Sequential composition) The following properties hold for all closed process
terms pq,r € P and guard b:

3 p = 4

(p; Q) 1 < p;@r)
(pa;r < p;rfg;r
b—(p;q < ((b—psq

A deadlock process term followed by some other process termguivalent to the deadlock

process term itself since the deadlock process term dodemoinate successfully, i.e., dead-
lock is a left-zero element for sequential composition. Umtial composition is associative
and alternative composition distributes over sequentiadposition from the left. A guard dis-

tributes to the left argument of a sequential composition.

Proposition 5 (Parallel composition) The following properties hold for all closed process
terms pq,r € P :

pilq < qlp
Plolr = pl@lr)

Parallel composition is commutative and associative.
Proposition 6 (Action encapsulation operator) The following properties hold for all closed
process terms g P, and sets of actiond, A’:

dg(P) < p
0404(P) = daua(pP)

If there are no actions to be encapsulated, the applicafitimecaction encapsulation operator
to a process term has no effect. Multiple applications of the action encagisoih operator are
equivalent to a single application where all the actionse¢@bcapsulated are combined using
union of sets of actions.

Proposition 7 (Inconsistent process)The following properties hold for all closed process
terms pe P and predicate u:

un L
plL
plIlL
da(L)
L;p
skip; L

O o o O

S

The inconsistent process term is a zero element for signels@n operator, alternative com-
position, parallel composition and action encapsulatiparator. It is also a left-zero element
for sequential composition. Going on asafter performing an action transition, for example
skip, is impossible.
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Appendix A

Derivation of D, from D,

This appendix shows the derivation of the deduction rule®gf from D,,, as described in
Section6.2. SectionsA.1 andA.2 show the derivation for the atomic process terms and the
operators, respectively. The deduction rules frbgm, which are not shown in these sections
are syntactically equivalent to their corresponding dédnaules inD.,. Deduction rules with

a label of the formC,-n, wheren denotes the number of the deduction rule, are fiop. The
other deduction rules are frof, .

A.1 Derivation for atomic process terms

Action predicate

E=0UEL, € € B(0,C,JUW, L), E-UE =T L
C, AL R IF(W:r>lyo) 228 (/e

o0’ € B0, JUW), 0" Uo' T
o, la, o’
(JLRIFW:r>»l,o) (v, o)

Lo-1

Environment(C, J, L, R) is simplified to(J, R),

domEChy =9 = & =0,
dom(¢’) = dom(o) = &, =¢&/,

free variableg’ and& ~ are renamed te’ ando —, respectively,

for function E see Sectio.2

55



56 Appendix A. Derivation oD, from D,

GUECL

(C, LR IF(W:r>l,o) "%

Lo-2

ElF(W:r>lyo) %
e Environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

o domECH) =9 = o UEC =0.

Send and receive

E=0UE° £ cEB(0.C, I L)

: , 3
(C.J,L.R) IF (hlley, o) S0 E@D 8 ey
o' € E(o,J) £,3

o, isah,[o(en)]), o’

(J,RIF (h!le, o) v, o'

Environment(C, J, L, R) is simplified to(J, R),
dom¢th) = = £ =o,
dom¢’) = dom(o) = &, =§&/,

o free variablet’ is renamed t@’,

for function E see Sectio%.2

E=o0UECL & € B(0,C, IV (X}, L), (%) = G
(C. 3, L, R) IF (h 72y, o) 22000, € ey

N

o' € B(o, JU{Xn}), 0'(Xy) = Cy

o, ira(h,[cnl, {Xn}), o’

Lo-4

(J, R IF (h 22X, o) (v',0’)

e Environment(C, J, L, R) is simplified to(J, R),
o domEh) = = & =0,
e dom¢’) = dom(o) = &, =¢&/,



A.1. Derivation for atomic process terms

o free variablet’ is renamed t@’,

e for function E see Sectiol.2

UUSCL

(C,J,L,R)IF (h!ley, o) T~

_ £5-5
El-(h!le, o) %

Environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

domECH) =9 = o UECL =0.

oUECL

(C, 3, L, R) IF (N 22Xy, o) "

L-6

E IF (h?2?X,, o) <

Environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

domECH) =9 = o UECL =0.

Consistent deadlock

UUSCL

C,JLRIF@,0) ~

—(T £2'7
El- (5, 0) %

e Environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

o domECH) =9 = o UECL =0.
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A.2 Derivation for operators

Delay enabling operator

pE S20Et

E "
([p], o) = ([P], po (1))

9

Q
E p € (o,1) £

([pl, o) =5 ([pl, p(D))

dom(rangép)) = dom(c) = p, = p,

e for function 2 see Sectio®.2

10

GUECL
~

(C,J,L,R) IF{(pl, o)

— 1,10
EIF ([p], o) %

Environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

domECh) =9 = o UECL = 0.

Guard operator

P € Qoet, Vseo p(S) = b,
0.p10 ;o
p(0) Eb = (p.o) 29 (p, o),
) b= (p, py ()~
E o) = (P, ps (1)) 20

(b— p.o) =D (b= p, p(t)

peQo.1), Yseon p(S) = —b,
0, 0
p(0) Eb= (po) X (p, o)
t) = b o) 7Y
o PO ED= (P W) 20

(b— p.o) =5 (b— p. p(t))

e dom(rang€p)) = dom(c) = p, = p,

e for function 2 see Sectio®.2
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o UECL = —b -

UUSCL

C, L, RIF{b— p,o) ~

il Y
El(b— p,o) %

e Environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

o domECh) =9 = o UECL =0.

Parallel composition operator

v
(C.JUW, L, R) IF (p, o) 2095 <3a>
p/

v
(C.J,L.R) IF (g, o) Z12OcsWE <ga>

9 26
v
<c,J,L,R)|Hp||q,a>M>< g a>
prllg
v
<q||p,a>w>< g ,a’>

qlp
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\

(Juw,R)IHp,a>M<

) N TQ
q\
\/

N No

(J.R I (q a>w><

°Q
q\
—_—

°Q

SN

/\
_ o
q\
—_—

o)

(3R I (p || q.o) L2,

Q\'O

@] po) S22 < b ,a/>
qalp
e Environment(C, JUW, L, R) is simplified to(J UW, R),

e environmentC, J, L, R) is simplified to(J, R).

Recursion variable

(R(X)., o) % <;,,o—/>
C,J LR 36
(X, o) % <g,,a/>
(R(X).0) % <g,,a’>
(R £,36
(X, o) % <g,,a’>

e Environment(C, J, L, R) is simplified to(J, R).

(R(X), o) =5 (p', o)

(C,J LR 37

(X, 0) ~5 (P, o)

tp o
(J.R) (R(X),a)tr—> (p,o’) £,-37

(X,0) =% (p, o)
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e Environment(C, J, L, R) is simplified to(J, R).

3
R(X o
oL R BRI 2 g
(X,0) ~
£
R(X s
(J.R) (R( )’G>s £,-38
(X,0) ~
e Environment(C, J, L, R) is simplified to(J, R).
Variable scope operator
ag v
(CU D). 3. LU {g). R) - (pId'. X5, 6o/d. Xo. Gol. 0 U o) = (1 .0)
L (6.a.8) 39
(C. . L, R IF ([lv 0ax, - X0}, {G0} | P, 0) ——
( v o)
v (" [ {d’, xo)[d, Xo/d", X1, {Xo}, {Do} | P'[d, X0, Qo/d", X, Qo] 11"
ag v
(pld'/d], o U og) =25 (10"
E ; % L>-39
(v oa,, 8,9 | pll, o) 225 o))

v (¢’ [{d'pId/d'], 9,4 | pd/dT]" "7

e {Xo} =0 = {xp} =9,

e {Qo} =9 = (g} =Y,

o (X} =0A{g) =0 = (CU{x),J, LU{gy), R =(C,JL,R),
e environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

e notationoyy,, is simplified tooy, , which is defined asy, € {d} — (AU L). Notationodfxé
is simplified tooy, which is defined asy € {d'} — (A),

e substitution p[d’, x;, gy/d, Xo, Qo] is simplified to p[d'/d], and substitution
pld, Xo, 9o/d’, Xy, 9] is simplified top[d/d'],
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substitution[@, ¥/ C, L] on function definitionc for arbitrary receive actions ith, cs W):

Ky¢L (& irath,cs W), §) = §,¢,, irath,cs WN (dom(o) U L)), &/, .
and for all other actions:
KJCL(S’ a, é/) = SO’CL’ a, S;CL’

result in the following definition for arbitrary receive amsts irah, cs, W):

ks (&, irath, cs W), ¢") = &,, ira(h, cs W N dom(o)), &,
and for all other actions:
KO‘(E? av 5/) = EO" av E(;v

where valuationg, andé, denotet | dom(o) andé’ [ dom(o), respectively. The signature
of functionk is simplifiedtok e T x ¥ x Ax X —> X x AX X.

tp

(CU X}, 3, LU {goh, R) I (pld’, X5, Gp/d, Xo, Gol. 0 U ogx) = (P, 07)

t’paCL

(Ca ‘]a L7 R) I <|[V Odxg | » {X0}7 {90} | p ]|70> >
<|[V (OJ [ {d/7 Xb})[da XO/d/’ Xé)]’ {X0}7 {90} | p/[da Xo, gO/d/7 XE)» 96] ]la O';)

40

t.p
d/d, Uow /, /
c (pld'/d], 0 Usa) = (p', o) 40

(lvoa,. 8.9 | pl.o) = (v (o' [ {d'DId/d1, 4,8 | pld/d1].0%)

X} =90 = (x5} =9,

(g} =0 = {g} =7,

X =0n{gp) =0 = (CU{Xp}, I, LU{g}, R =(C,JL,R),
environmentC, J, L, R) is simplified to(J, R), and denoted bz,

notationoygy,, is simplified tooy, , which is defined asy, € {d} — (A U L), and notation
Odx, is simplified tooy, which is defined asy € {d'} — (A),

substitution p[d’, x;, gp/d, Xo, Qo] is simplified to p[d’/d], and substitution
pld, Xo, do/d’, Xg, Uy is simplified top[d/d'],

notationp, ¢, is simplified top, which denotes | dom(o).

(C U {Xp), 3, L UGy}, R IF (pId’, Xp, Go/d, Xo, Gol, 0 U gy ) >

(C.J L. R) I {llv 0ac, - {Xol. (G0} | PI.o)

41
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£
d’'/d],o Uoy) ~~
(pld/dlo Vo) =

(lvoa, 0.0 | pl,o) 5

e {Xo} =0 = (x5} =9,

o (G} =0 = (g} =9,

o Xgl=0A{gp) =Y = (CU{Xy},J,LU{gy), R =(C,J,L,R),
e environment(C, J, L, R) is simplified to(J, R), and denoted b¥,

e notationoyy, is simplified tooy, , which is defined asy, € {d} — (A U L), and notation
Odx, is simplified tooy, which is defined asy € {d'} — (A),

e substitution p[d’, x;, g5/d, Xo, Qo] is simplified to p[d'/d], and substitution
pld, Xo, 9o/d’, X, 9] is simplified top[d/d'],

e abbreviatiort, , is simplified tog, which denoteg [ dom(o).

Recursion scope operator

v

(C.J, L, RU{X > q[X'/X]}) I (p[X'/X], o) = { 0 o’)
46
« v ,
C, I LRIF(r{X—at| pl,o)— <|[R{X > q | pIX/X77°° )
(J, RU{X" = qIX'/XID IF (pIX'/X], o) = (éﬂ’)
L£,-46

v

QR R X A 1T o) S (o) iosny

,07)

e Environment(C, J, L, RU{X’ — q[X'/X]}) is simplified to(J, RU {X' — q[X'/X]}).

(C,J, L, RU{X" > q[X'/X]}) IF (p[X'/X], o) LN (p',o’),

47
(C. LR (R(X > a) | pl.o) =2 (R (X + ) | PIX/XT].0)
(J. RU X > gIX/XI) I (pIX'/X]. 0) = (p, o). [o-47
o

QR (RIX = a) | plo) =2 (R (X = ) | PIX/XT ], 0%)

e Environment(C, J, L, RU{X' — q[X'/X]}) is simplified to(J, RU {X’ — q[X'/X]}).



64 Appendix A. Derivation oD, from D,

(C,J, L, RU{X > q[X'/X]}) IF (p[X'/X], o) RS

: 48
CILRIF(r{X—a} [ pl,o)~>

£

(J, RUX" = qIX'/X]}) IF (pIX'/X], o) ~ £,-48

(3R IF([rR{X—q} | pll,o) ~

e Environment(C, J, L, RU {X’' — q[X'/X]}) is simplified to(J, RU {X' — q[X'/X]1}).
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